Difference between revisions of "009A Sample Midterm 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 73: | Line 73: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | + | |Now, we have | |
|- | |- | ||
| | | | ||
| Line 91: | Line 91: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |First, we have |
|- | |- | ||
| − | | | + | | <math>\begin{array}{rcl} |
| + | \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim _{x\rightarrow \infty} \frac{(-2x^3-2x+3)}{(3x^3+3x^2-3)} \frac{(\frac{1}{x^3})}{(\frac{1}{x^3})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow 0} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}. | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 99: | Line 103: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we use the properties of limits to get |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim _{x\rightarrow \infty} \frac{-2x^3-2x+3}{3x^3+3x^2-3}} & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-2-\frac{2}{x^2}+\frac{3}{x^3}}{3+\frac{3}{x}-\frac{3}{x^3}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty} (-2-\frac{2}{x^2}+\frac{3}{x^3})}{\lim_{x\rightarrow \infty} (3+\frac{3}{x}-\frac{3}{x^3})}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{\lim_{x\rightarrow \infty} -2 +\lim_{x\rightarrow \infty} \frac{2}{x^2} +\lim_{x\rightarrow \infty} \frac{3}{x^3}}{\lim_{x\rightarrow \infty} 3+\lim_{x\rightarrow \infty} \frac{3}{x}-\lim_{x\rightarrow \infty}\frac{3}{x^3}}} \\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-2+0+0}{3+0+0}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{-2}{3}.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 112: | Line 127: | ||
| '''(b)''' <math>\frac{2}{3}</math> | | '''(b)''' <math>\frac{2}{3}</math> | ||
|- | |- | ||
| − | |'''(c)''' | + | | '''(c)''' <math>\frac{-2}{3}</math> |
|} | |} | ||
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 14:01, 17 February 2017
Find the following limits:
- a) If find
- b) Find
- c) Evaluate
| Foundations: |
|---|
| 1. Linearity rules of limits |
| 2. lim sin(x)/x |
Solution:
(a)
| Step 1: |
|---|
| First, we have |
| Therefore, |
| Step 2: |
|---|
| Since we have |
|
|
| Multiplying both sides by we get |
(b)
| Step 1: |
|---|
| First, we write |
| Step 2: |
|---|
| Now, we have |
|
|
(c)
| Step 1: |
|---|
| First, we have |
| Step 2: |
|---|
| Now, we use the properties of limits to get |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |
| (c) |