Difference between revisions of "009A Sample Midterm 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 47: Line 47:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we use the Chain Rule to get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=\cos(\cos(e^x))(\cos(e^x))'.</math>
 
|}
 
|}
  
Line 59: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we use the Chain Rule again to get
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\
 +
&&\\
 +
& = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\
 +
&&\\
 +
& = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 99: Line 98:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)</math>  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\cos(\cos(e^x))(-\sin(e^x))(e^x)</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:39, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b)
c) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle h(x)=\frac{(5x^2+7x)^3}{\ln(x^2+1)} }


Foundations:  
1. Chain Rule
2. Derivatives of trig/ln
3. Quotient Rule


Solution:

(a)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=3\tan^2(7x^2+5)(\tan(7x^2+5))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{3\tan^2(7x^2+5)(\tan(7x^2+5))'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(7x^2+5)'}\\ &&\\ & = & \displaystyle{3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x).} \end{array}}

(b)

Step 1:  
First, we use the Chain Rule to get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g'(x)=\cos(\cos(e^x))(\cos(e^x))'.}
Step 2:  
Now, we use the Chain Rule again to get

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{g'(x)} & = & \displaystyle{\cos(\cos(e^x))(\cos(e^x))'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x)'}\\ &&\\ & = & \displaystyle{\cos(\cos(e^x))(-\sin(e^x))(e^x).} \end{array}}

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3\tan^2(7x^2+5)\sec^2(7x^2+5)(14x)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(\cos(e^x))(-\sin(e^x))(e^x)}
(c)

Return to Sample Exam