Difference between revisions of "009A Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 42: Line 42:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the Quotient Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>g'(x)=\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}.</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 54: Line 50:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{g'(x)} & = & \displaystyle{\frac{(1+6x)(x^3+x^{-3})'-(x^3+x^{-3})(1+6x)'}{(1+6x)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 69: Line 65:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{(1+6x)(3x^2-3x^{-4})-(x^3+x^{-3})(6)}{(1+6x)^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:24, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b) where


Foundations:  
1. Product Rule
2. Quotient Rule


Solution:

(a)

Step 1:  
Using the Product Rule, we have
       
Step 2:  
Now, we have
       

(b)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we have
       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam