Difference between revisions of "009A Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
|'''1.''' Product Rule
|-
 
|
 
::
 
 
|-
 
|-
|
+
|'''2.''' Quotient Rule
::
 
 
|}
 
|}
  
Line 25: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the Product Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>f'(x)=x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1).</math>
 
|}
 
|}
  
Line 33: Line 29:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1)}\\
 +
&&\\
 +
& = & \displaystyle{x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1).}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 67:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:19, 17 February 2017

Find the derivatives of the following functions. Do not simplify.

a) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x)=x^3(x^{\frac{4}{3}}-1)}
b) Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g(x)=\frac{x^3+x^{-3}}{1+6x}} where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x>0}


Foundations:  
1. Product Rule
2. Quotient Rule


Solution:

(a)

Step 1:  
Using the Product Rule, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(x)=x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1).}
Step 2:  
Now, we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{f'(x)} & = & \displaystyle{x^3(x^{\frac{4}{3}}-1)'+(x^3)'(x^{\frac{4}{3}}-1)}\\ &&\\ & = & \displaystyle{x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1).} \end{array}}

(b)

Step 1:  
Step 2:  


Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^3\bigg(\frac{4}{3}x^{\frac{1}{3}}\bigg)+(3x^2)(x^{\frac{4}{3}}-1)}
(b)

Return to Sample Exam