Difference between revisions of "009A Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
|-
 
|
 
 
|-
 
|-
 
|
 
|
::
 
|-
 
|
 
::
 
 
|}
 
|}
  
Line 23: Line 17:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|'''Intermediate Value Theorem'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; If <math style="vertical-align: -5px">f(x)</math>&thinsp; is continuous on a closed interval <math style="vertical-align: -5px">[a,b]</math>
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; and <math style="vertical-align: 0px">c</math> is any number between <math style="vertical-align: -5px">f(a)</math>&thinsp; and <math style="vertical-align: -5px">f(b)</math>,
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; then there is at least one number <math style="vertical-align: 0px">x</math> in the closed interval such that <math style="vertical-align: -5px">f(x)=c.</math>
 
|}
 
|}
  

Revision as of 12:37, 17 February 2017

The function is a polynomial and therefore continuous everywhere.

a) State the Intermediate Value Theorem.
b) Use the Intermediate Value Theorem to show that has a zero in the interval


Foundations:  


Solution:

(a)

Step 1:  
Intermediate Value Theorem
        If   is continuous on a closed interval
        and is any number between   and ,

        then there is at least one number in the closed interval such that

(b)

Step 1:  
Step 2:  


Final Answer:  
(a)
(b)

Return to Sample Exam