Difference between revisions of "009A Sample Midterm 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 5: | Line 5: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |Limit Definition of Derivative |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 20: | Line 14: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Let <math>f(x)=\frac{1+x}{3x}.</math> |
+ | |- | ||
+ | |Using the limit definition of derivative, we have | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+(x+h)}{3(x+h)})-(\frac{1+x}{3x})}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+x+h}{3x+3h})-(\frac{1+x}{h})}{h}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 28: | Line 30: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we get a common denominator for the fractions in the numerator. |
+ | |- | ||
+ | |Hence, we have | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{(1+x+h)3x}{(3x+3h)(3x)}-\frac{(1+x)(3x+3h)}{(3x+3h)(3x)}}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{3x+3x^2+3xh-(3x+3h+3x^2+3hx)}{(3x+3h)(3x)}}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3h}{h(3x+3h)(3x)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3}{(3x+3h)(3x)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-3}{(3x)(3x)}}\\ | ||
+ | & = & \displaystyle{\frac{-1}{3x^2}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 37: | Line 52: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>\frac{dy}{dx}=\frac{-1}{3x^2}</math> |
|- | |- | ||
| | | | ||
|} | |} | ||
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 12:32, 17 February 2017
Use the definition of the derivative to find for the function
Foundations: |
---|
Limit Definition of Derivative |
Solution:
Step 1: |
---|
Let |
Using the limit definition of derivative, we have |
Step 2: |
---|
Now, we get a common denominator for the fractions in the numerator. |
Hence, we have |
Final Answer: |
---|