Difference between revisions of "009A Sample Midterm 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 5: Line 5:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
|Limit Definition of Derivative
|-
 
|
 
::
 
|-
 
|
 
::
 
 
|}
 
|}
  
Line 20: Line 14:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Let <math>f(x)=\frac{1+x}{3x}.</math>
 +
|-
 +
|Using the limit definition of derivative, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+(x+h)}{3(x+h)})-(\frac{1+x}{3x})}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\frac{1+x+h}{3x+3h})-(\frac{1+x}{h})}{h}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 28: Line 30:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we get a common denominator for the fractions in the numerator.
 +
|-
 +
|Hence, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{(1+x+h)3x}{(3x+3h)(3x)}-\frac{(1+x)(3x+3h)}{(3x+3h)(3x)}}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0}\frac{\frac{3x+3x^2+3xh-(3x+3h+3x^2+3hx)}{(3x+3h)(3x)}}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3h}{h(3x+3h)(3x)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{-3}{(3x+3h)(3x)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-3}{(3x)(3x)}}\\
 +
& = & \displaystyle{\frac{-1}{3x^2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 37: Line 52:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{dy}{dx}=\frac{-1}{3x^2}</math>
 
|-
 
|-
 
|  
 
|  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 12:32, 17 February 2017

Use the definition of the derivative to find for the function


Foundations:  
Limit Definition of Derivative


Solution:

Step 1:  
Let
Using the limit definition of derivative, we have
       
Step 2:  
Now, we get a common denominator for the fractions in the numerator.
Hence, we have
       


Final Answer:  
       

Return to Sample Exam