Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 56: Line 56:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|First, we write
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{x} \frac{x}{\sin(7x)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 0} \frac{3}{7} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 68: Line 70:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)}} & = & \displaystyle{\frac{3}{7}\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\frac{7x}{\sin(7x)}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{7}\bigg(\lim_{x\rightarrow 0} \frac{\sin(3x)}{3x}\bigg)\bigg(\lim_{x\rightarrow 0} \frac{7x}{\sin(7x)}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{7} (1)(1)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{7}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 108: Line 115:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>  
 
|-
 
|-
|'''(b)'''
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{3}{7}</math>
 
|-
 
|-
 
|'''(c)'''  
 
|'''(c)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:44, 17 February 2017

Evaluate the following limits.

a) Find
b) Find
c) Evaluate


Foundations:  
1. lim sinx/x
2. Left and right hand limit


Solution:

(a)

Step 1:  
We begin by noticing that we plug in into
       
we get
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
First, we write
       
Step 2:  
Now, we have

       

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
    (b)    
(c)

Return to Sample Exam