Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 21: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
||We begin by noticing that we plug in <math>x=2</math> into
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x^2+12}-4}{x-2},</math>
 
|-
 
|-
|
+
|we get <math>\frac{0}{0}.</math>
 
|}
 
|}
  
Line 29: Line 31:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 +
|-
 +
|Hence, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}} & = & \displaystyle{\lim_{x\rightarrow 2} \frac{(\sqrt{x^2+12}-4)}{(x-2)}\frac{(\sqrt{x^2+12}+4)}{(\sqrt{x^2+12}+4)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x^2+12)-16}{(x-2)(\sqrt{x^2+12}+4)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{x^2-4}{(x-2)(\sqrt{x^2+12}+4)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{(x-2)(x+2)}{(x-2)(\sqrt{x^2+12}+4)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow 2} \frac{x+2}{\sqrt{x^2+12}+4}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{4}{8}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 88: Line 106:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|-
 
|-
 
|'''(b)'''
 
|'''(b)'''

Revision as of 11:31, 17 February 2017

Evaluate the following limits.

a) Find
b) Find
c) Evaluate


Foundations:  
1. lim sinx/x
2. Left and right hand limit


Solution:

(a)

Step 1:  
We begin by noticing that we plug in into
       
we get
Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
    (a)    
(b)
(c)

Return to Sample Exam