Difference between revisions of "009A Sample Midterm 1, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 19: | Line 19: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Using the limit definition of the derivative, we have |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3x-5}}{h}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 27: | Line 34: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we multiply the numerator and denominator by the conjugate of the numerator. |
+ | |- | ||
+ | |Hence, we have | ||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\sqrt{3x+3h-5}-\sqrt{3x-5})}{h} \frac{(\sqrt{3x+3h-5}+\sqrt{3x-5})}{(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3x+3h-5)-(3x-5)}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{h\rightarrow 0} \frac{3}{\sqrt{3x+3h-5}+\sqrt{3x-5}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3}{\sqrt{3x-5}+\sqrt{3x-5}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{3}{2\sqrt{3x-5}}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 60: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>f'(x)=\frac{3}{2\sqrt{3x-5}}</math> |
|- | |- | ||
|'''(b)''' | |'''(b)''' | ||
|} | |} | ||
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 13:23, 16 February 2017
Let
- a) Use the definition of the derivative to compute for
- b) Find the equation of the tangent line to at
Foundations: |
---|
1. Limit Definition of Derivative |
2. Tangent line equation |
Solution:
(a)
Step 1: |
---|
Using the limit definition of the derivative, we have |
|
Step 2: |
---|
Now, we multiply the numerator and denominator by the conjugate of the numerator. |
Hence, we have |
(b)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |