Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the limit definition of the derivative, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3x-5}}{h}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 27: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 +
|-
 +
|Hence, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\sqrt{3x+3h-5}-\sqrt{3x-5})}{h} \frac{(\sqrt{3x+3h-5}+\sqrt{3x-5})}{(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3x+3h-5)-(3x-5)}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3}{\sqrt{3x+3h-5}+\sqrt{3x-5}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{\sqrt{3x-5}+\sqrt{3x-5}}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{3}{2\sqrt{3x-5}}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 60: Line 81:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>f'(x)=\frac{3}{2\sqrt{3x-5}}</math>
 
|-
 
|-
 
|'''(b)'''  
 
|'''(b)'''  
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:23, 16 February 2017

Let

a) Use the definition of the derivative to compute for
b) Find the equation of the tangent line to at


Foundations:  
1. Limit Definition of Derivative
2. Tangent line equation

Solution:

(a)

Step 1:  
Using the limit definition of the derivative, we have

       

Step 2:  
Now, we multiply the numerator and denominator by the conjugate of the numerator.
Hence, we have
       

(b)

Step 1:  
Step 2:  
Final Answer:  
    (a)    
(b)

Return to Sample Exam