Difference between revisions of "009A Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 64: | Line 64: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Using the Quotient Rule, we have |
|- | |- | ||
− | | | + | | <math>h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}.</math> |
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 76: | Line 72: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, using the Chain Rule, we have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{h'(x)} & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-5x^3)'-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(x^2+1)'}{(\sqrt{x^2+1})^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 92: | Line 90: | ||
| '''(b)''' <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math> | | '''(b)''' <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math> | ||
|- | |- | ||
− | |'''(c)''' | + | | '''(c)''' <math>\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math> |
|} | |} | ||
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:46, 16 February 2017
Find the derivatives of the following functions. Do not simplify.
- a)
- b) where
- c)
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Chain Rule |
Solution:
(a)
Step 1: |
---|
Using the Product Rule, we have |
Step 2: |
---|
Now, we have |
(b)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, we have |
(c)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, using the Chain Rule, we have |
Final Answer: |
---|
(a) |
(b) |
(c) |