Difference between revisions of "009A Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 64: Line 64:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|Using the Quotient Rule, we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>h'(x)=\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}.</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 76: Line 72:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|Now, using the Chain Rule, we have
|-
 
|
 
|-
 
|
 
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})'-e^{-5x^3}(\sqrt{x^2+1})'}{(\sqrt{x^2+1})^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-5x^3)'-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(x^2+1)'}{(\sqrt{x^2+1})^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 92: Line 90:
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math>  
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math>  
 
|-
 
|-
|'''(c)'''  
+
|&nbsp; &nbsp; '''(c)''' &nbsp; &nbsp; <math>\frac{\sqrt{x^2+1}(e^{-5x^3})(-15x^2)-e^{-5x^3}\frac{1}{2}(x^2+1)^{\frac{-1}{2}}(2x)}{(\sqrt{x^2+1})^2}</math>
 
|}
 
|}
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:46, 16 February 2017

Find the derivatives of the following functions. Do not simplify.

a)
b) where
c)


Foundations:  
1. Product Rule
2. Quotient Rule
3. Chain Rule

Solution:

(a)

Step 1:  
Using the Product Rule, we have
       
Step 2:  
Now, we have
       

(b)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, we have
       

(c)

Step 1:  
Using the Quotient Rule, we have
       
Step 2:  
Now, using the Chain Rule, we have
       
Final Answer:  
    (a)    
    (b)    
    (c)    

Return to Sample Exam