Difference between revisions of "009A Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 45: | Line 45: | ||
|Using the Quotient Rule, we have | |Using the Quotient Rule, we have | ||
|- | |- | ||
− | | <math>g'(x)=.</math> | + | | <math>g'(x)=\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}.</math> |
|} | |} | ||
Line 51: | Line 51: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | | <math>\begin{array}{rcl} |
+ | \displaystyle{g'(x)} & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(x+3)'-(x+3)(x^{\frac{3}{2}}+2)'}{(x^{\frac{3}{2}}+2)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 90: | Line 90: | ||
| '''(a)''' <math>\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math> | | '''(a)''' <math>\bigg(\frac{1}{2}x^{-\frac{1}{2}}\bigg)(x^2+2)+\sqrt{x}(2x)</math> | ||
|- | |- | ||
− | |'''(b)''' | + | | '''(b)''' <math>\frac{(x^{\frac{3}{2}}+2)(1)-(x+3)(\frac{3}{2}x^{\frac{1}{2}})}{(x^{\frac{3}{2}}+2)^2}</math> |
|- | |- | ||
|'''(c)''' | |'''(c)''' | ||
|} | |} | ||
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] |
Revision as of 10:38, 16 February 2017
Find the derivatives of the following functions. Do not simplify.
- a)
- b) where
- c)
Foundations: |
---|
1. Product Rule |
2. Quotient Rule |
3. Chain Rule |
Solution:
(a)
Step 1: |
---|
Using the Product Rule, we have |
Step 2: |
---|
Now, we have |
(b)
Step 1: |
---|
Using the Quotient Rule, we have |
Step 2: |
---|
Now, we have |
(c)
Step 1: |
---|
Step 2: |
---|
Final Answer: |
---|
(a) |
(b) |
(c) |