Difference between revisions of "009C Sample Midterm 2, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
| Direct Comparison Test
+
|'''Direct Comparison Test'''
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math>
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math>
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges.
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; '''2.''' If <math>\sum_{n=1}^\infty a_n</math> diverges, then <math>\sum_{n=1}^\infty b_n</math> diverges.
 
|}
 
|}
  

Revision as of 16:57, 15 February 2017

Determine convergence or divergence:


Foundations:  
Direct Comparison Test
        Let and be positive sequences where
        for all for some
        1. If converges, then converges.
        2. If diverges, then diverges.

Solution:

Step 1:  
First, we note that
       
for all
This means that we can use a comparison test on this series.
Let
Step 2:  
Let
We want to compare the series in this problem with
       
This is the harmonic series (or -series with )
Hence, diverges.
Step 3:  
Also, we have since
       
for all
Therefore, the series diverges
by the Direct Comparison Test.


Final Answer:  
        diverges

Return to Sample Exam