Difference between revisions of "009C Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 49: Line 49:
 
\end{array}</math>
 
\end{array}</math>
 
|-
 
|-
|Now, this limit has the form <math>\frac{0}{0}.</math>
+
|Now, this limit has the form <math style="vertical-align: -13px">\frac{0}{0}.</math>
 
|-
 
|-
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
 
|Hence, we can use L'Hopital's Rule to calculate this limit.
Line 76: Line 76:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|Since <math>\ln y= -4,</math> <math>y=e^{-4}.</math>
+
|Since <math>\ln y= -4,</math> we know
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=e^{-4}.</math>
 
|-
 
|-
 
|Now, we have  
 
|Now, we have  
Line 86: Line 88:
 
& = & \displaystyle{\frac{1}{e^{-4}}}\\
 
& = & \displaystyle{\frac{1}{e^{-4}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{e^4}
+
& = & \displaystyle{e^4.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 94: Line 96:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|First, we not that this is a geometric series with <math>r=\frac{1}{4}.</math>
+
|First, we not that this is a geometric series with <math style="vertical-align: -14px">r=\frac{1}{4}.</math>
 
|-
 
|-
|Since <math>|r|=\frac{1}{4}<1,</math>
+
|Since <math style="vertical-align: -14px">|r|=\frac{1}{4}<1,</math>
 
|-
 
|-
 
|this series converges.
 
|this series converges.
Line 106: Line 108:
 
|Now, we need to find the sum of this series.  
 
|Now, we need to find the sum of this series.  
 
|-
 
|-
|The first term of the series is <math>a_1=\frac{1}{2}.</math>
+
|The first term of the series is <math style="vertical-align: -13px">a_1=\frac{1}{2}.</math>
 
|-
 
|-
 
|Hence, the sum of the series is  
 
|Hence, the sum of the series is  
Line 116: Line 118:
 
& = & \displaystyle{\frac{\big(\frac{1}{2}\big)}{\big(\frac{3}{4}\big)}}\\
 
& = & \displaystyle{\frac{\big(\frac{1}{2}\big)}{\big(\frac{3}{4}\big)}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{2}{3}}
+
& = & \displaystyle{\frac{2}{3}.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 123: Line 125:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>e^{4}</math>  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: -1px">e^{4}</math>  
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{2}{3}</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -20px">\frac{2}{3}</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:51, 15 February 2017

Evaluate:

a)
b)


Foundations:  
L'Hopital's Rule
Sum formula for geometric series

Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since we know
       
Now, we have

       

(b)

Step 1:  
First, we not that this is a geometric series with
Since
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is
Hence, the sum of the series is

       

Final Answer:  
    (a)    
    (b)    

Return to Sample Exam