Difference between revisions of "009C Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 30: Line 30:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}>0</math>  
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}>0</math>  
 
|-
 
|-
|for all <math>n\ge 1.</math>
+
|for all <math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|This means that we can use a comparison test on this series.
 
|This means that we can use a comparison test on this series.
 
|-
 
|-
|Let <math>a_n=\frac{1}{n^23^n}.</math>
+
|Let <math style="vertical-align: -14px">a_n=\frac{1}{n^23^n}.</math>
 
|}
 
|}
  
Line 40: Line 40:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Let <math>b_n=\frac{1}{n^2}.</math>
+
|Let <math style="vertical-align: -14px">b_n=\frac{1}{n^2}.</math>
 
|-
 
|-
 
|We want to compare the series in this problem with  
 
|We want to compare the series in this problem with  
Line 46: Line 46:
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\sum_{n=1}^\infty b_n=\sum_{n=1}^\infty \frac{1}{n^2}.</math>
 
|-
 
|-
|This is a <math>p</math>-series with <math>p=2.</math>
+
|This is a <math style="vertical-align: -4px">p</math>-series with <math style="vertical-align: -4px">p=2.</math>
 
|-
 
|-
 
|Hence, <math>\sum_{n=1}^\infty b_n</math> converges.
 
|Hence, <math>\sum_{n=1}^\infty b_n</math> converges.
Line 54: Line 54:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Also, we have <math>a_n<b_n</math> since  
+
|Also, we have <math style="vertical-align: -4px">a_n<b_n</math> since  
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}<\frac{1}{n^2}</math>
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{n^23^n}<\frac{1}{n^2}</math>
 
|-
 
|-
|for all <math>n\ge 1.</math>
+
|for all <math style="vertical-align: -3px">n\ge 1.</math>
 
|-
 
|-
 
|Therefore, the series <math>\sum_{n=1}^\infty a_n</math> converges
 
|Therefore, the series <math>\sum_{n=1}^\infty a_n</math> converges

Revision as of 15:35, 15 February 2017

Determine the convergence or divergence of the following series.

Be sure to justify your answers!


Foundations:  
Direct Comparison Test
        Let and be positive sequences where
        for all for some
        1. If converges, then converges.
        2. If diverges, then diverges.


Solution:

Step 1:  
First, we note that
       
for all
This means that we can use a comparison test on this series.
Let
Step 2:  
Let
We want to compare the series in this problem with
       
This is a -series with
Hence, converges.
Step 3:  
Also, we have since
       
for all
Therefore, the series converges
by the Direct Comparison Test.


Final Answer:  
        converges

Return to Sample Exam