Difference between revisions of "009C Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|'''Direct Comparison Test'''
 
|'''Direct Comparison Test'''
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math>a_n\le b_n</math>  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Let <math>\{a_n\}</math> and <math>\{b_n\}</math> be positive sequences where <math style="vertical-align: -3px">a_n\le b_n</math>  
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; for all <math>n\ge N</math> for some <math>N\ge 1.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; for all <math style="vertical-align: -3px">n\ge N</math> for some <math style="vertical-align: -3px">N\ge 1.</math>
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges.
 
|&nbsp; &nbsp; &nbsp; &nbsp; '''1.''' If <math>\sum_{n=1}^\infty b_n</math> converges, then <math>\sum_{n=1}^\infty a_n</math> converges.

Revision as of 15:32, 15 February 2017

Determine the convergence or divergence of the following series.

Be sure to justify your answers!


Foundations:  
Direct Comparison Test
        Let and be positive sequences where
        for all for some
        1. If converges, then converges.
        2. If diverges, then diverges.


Solution:

Step 1:  
First, we note that
       
for all
This means that we can use a comparison test on this series.
Let
Step 2:  
Let
We want to compare the series in this problem with
       
This is a -series with
Hence, converges.
Step 3:  
Also, we have since
       
for all
Therefore, the series converges
by the Direct Comparison Test.


Final Answer:  
        converges

Return to Sample Exam