Difference between revisions of "009C Sample Midterm 1, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | <span class="exam">Consider the infinite series <math>\sum_{n=2}^\infty 2\bigg(\frac{1}{2^n}-\frac{1}{2^{n+1}}\bigg).</math> | ||
− | ::<span class="exam">a) Find an expression for the <math>n</math>th partial sum <math>s_n</math> of the series. | + | ::<span class="exam">a) Find an expression for the <math style="vertical-align: 0px">n</math>th partial sum <math style="vertical-align: -3px">s_n</math> of the series. |
− | ::<span class="exam">b) Compute <math>\lim_{n\rightarrow \infty} s_n.</math> | + | ::<span class="exam">b) Compute <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> |
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | |The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math> | + | |The <math style="vertical-align: 0px">n</math>th partial sum, <math style="vertical-align: -3px">s_n</math> for a series <math>\sum_{n=1}^\infty a_n </math> is defined as |
− | |||
− | |||
|- | |- | ||
| | | | ||
Line 25: | Line 23: | ||
|We need to find a pattern for the partial sums in order to find a formula. | |We need to find a pattern for the partial sums in order to find a formula. | ||
|- | |- | ||
− | |We start by calculating <math>s_2</math>. We have | + | |We start by calculating <math style="vertical-align: -3px">s_2</math>. We have |
|- | |- | ||
| <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math> | | <math>s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).</math> | ||
Line 33: | Line 31: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Next, we calculate <math>s_3</math> and <math>s_4.</math> We have | + | |Next, we calculate <math style="vertical-align: -3px">s_3</math> and <math style="vertical-align: -3px">s_4.</math> We have |
|- | |- | ||
| <math>\begin{array}{rcl} | | <math>\begin{array}{rcl} | ||
Line 53: | Line 51: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
− | |If we look at <math>s_2,s_3,s_4, </math> we notice a pattern. | + | |If we look at <math style="vertical-align: -4px">s_2,s_3,</math> and <math style="vertical-align: -4px">s_4, </math> we notice a pattern. |
|- | |- | ||
|From this pattern, we get the formula | |From this pattern, we get the formula | ||
Line 72: | Line 70: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |We now calculate <math>\lim_{n\rightarrow \infty} s_n.</math> | + | |We now calculate <math style="vertical-align: -11px">\lim_{n\rightarrow \infty} s_n.</math> |
|- | |- | ||
|We get | |We get |
Revision as of 09:36, 14 February 2017
Consider the infinite series
- a) Find an expression for the th partial sum of the series.
- b) Compute
Foundations: |
---|
The th partial sum, for a series is defined as |
|
Solution:
(a)
Step 1: |
---|
We need to find a pattern for the partial sums in order to find a formula. |
We start by calculating . We have |
Step 2: |
---|
Next, we calculate and We have |
and |
Step 3: |
---|
If we look at and we notice a pattern. |
From this pattern, we get the formula |
(b)
Step 1: |
---|
From Part (a), we have |
Step 2: |
---|
We now calculate |
We get |
Final Answer: |
---|
(a) |
(b) |