Difference between revisions of "009C Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |L'Hopital's Rule |
|- | |- | ||
|Sum formula for geometric series | |Sum formula for geometric series | ||
| Line 20: | Line 20: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Let | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |We then take the natural log of both sides to get | ||
| + | |- | ||
| + | | <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n\bigg).</math> | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
| + | |- | ||
| + | |We can interchange limits and continuous functions. | ||
| + | |- | ||
| + | |Therefore, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(1-\frac{4}{n}\bigg)^n}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1-\frac{4}{n}\bigg)}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Now, this limit has the form <math>\frac{0}{0}.</math> | ||
| + | |- | ||
| + | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |Now, we have | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{x}\bigg)}{\frac{1}{x}}}\\ | ||
| + | &&\\ | ||
| + | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\big(1-\frac{4}{x}\big)}\frac{4}{x^2}}{\big(-\frac{1}{x^2}\big)}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-4x}{x-4}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{-4.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| − | !Step | + | !Step 4: |
| + | |- | ||
| + | |Since <math>\ln y= -4,</math> <math>y=e^{-4}.</math> | ||
|- | |- | ||
| − | | | + | |Now, we have |
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\lim_{n\rightarrow \infty} 1}{\lim_{n\rightarrow \infty} \big(\frac{n-4}{n}\big)^n}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{1}{e^{-4}}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{e^4} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 67: | Line 123: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' | + | | '''(a)''' <math>e^{4}</math> |
|- | |- | ||
| '''(b)''' <math>\frac{2}{3}</math> | | '''(b)''' <math>\frac{2}{3}</math> | ||
|} | |} | ||
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 11:57, 13 February 2017
Evaluate:
- a)
- b)
| Foundations: |
|---|
| L'Hopital's Rule |
| Sum formula for geometric series |
Solution:
(a)
| Step 1: |
|---|
| Let
|
| We then take the natural log of both sides to get |
| Step 2: |
|---|
| We can interchange limits and continuous functions. |
| Therefore, we have |
|
|
| Now, this limit has the form |
| Hence, we can use L'Hopital's Rule to calculate this limit. |
| Step 3: |
|---|
| Now, we have |
|
|
| Step 4: |
|---|
| Since |
| Now, we have |
|
|
(b)
| Step 1: |
|---|
| First, we not that this is a geometric series with |
| Since |
| this series converges. |
| Step 2: |
|---|
| Now, we need to find the sum of this series. |
| The first term of the series is |
| Hence, the sum of the series is |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |