Difference between revisions of "009C Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 8: | Line 8: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |L'Hopital's Rule |
|- | |- | ||
|Sum formula for geometric series | |Sum formula for geometric series | ||
Line 20: | Line 20: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Let | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |We then take the natural log of both sides to get | ||
+ | |- | ||
+ | | <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n\bigg).</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |We can interchange limits and continuous functions. | ||
+ | |- | ||
+ | |Therefore, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(1-\frac{4}{n}\bigg)^n}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1-\frac{4}{n}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, this limit has the form <math>\frac{0}{0}.</math> | ||
+ | |- | ||
+ | |Hence, we can use L'Hopital's Rule to calculate this limit. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{x}\bigg)}{\frac{1}{x}}}\\ | ||
+ | &&\\ | ||
+ | & \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\big(1-\frac{4}{x}\big)}\frac{4}{x^2}}{\big(-\frac{1}{x^2}\big)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-4x}{x-4}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-4.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
− | !Step | + | !Step 4: |
+ | |- | ||
+ | |Since <math>\ln y= -4,</math> <math>y=e^{-4}.</math> | ||
|- | |- | ||
− | | | + | |Now, we have |
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\lim_{n\rightarrow \infty} 1}{\lim_{n\rightarrow \infty} \big(\frac{n-4}{n}\big)^n}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{1}{e^{-4}}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{e^4} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 67: | Line 123: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | |'''(a)''' | + | | '''(a)''' <math>e^{4}</math> |
|- | |- | ||
| '''(b)''' <math>\frac{2}{3}</math> | | '''(b)''' <math>\frac{2}{3}</math> | ||
|} | |} | ||
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 11:57, 13 February 2017
Evaluate:
- a)
- b)
Foundations: |
---|
L'Hopital's Rule |
Sum formula for geometric series |
Solution:
(a)
Step 1: |
---|
Let
|
We then take the natural log of both sides to get |
Step 2: |
---|
We can interchange limits and continuous functions. |
Therefore, we have |
|
Now, this limit has the form |
Hence, we can use L'Hopital's Rule to calculate this limit. |
Step 3: |
---|
Now, we have |
|
Step 4: |
---|
Since |
Now, we have |
|
(b)
Step 1: |
---|
First, we not that this is a geometric series with |
Since |
this series converges. |
Step 2: |
---|
Now, we need to find the sum of this series. |
The first term of the series is |
Hence, the sum of the series is |
|
Final Answer: |
---|
(a) |
(b) |