Difference between revisions of "009C Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|  
+
|L'Hopital's Rule
 
|-
 
|-
 
|Sum formula for geometric series
 
|Sum formula for geometric series
Line 20: Line 20:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|Let
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{y} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(\frac{n-4}{n}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n.}
 +
\end{array}</math>
 +
|-
 +
|We then take the natural log of both sides to get
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\ln y = \ln\bigg(\lim_{n\rightarrow \infty} \bigg(1-\frac{4}{n}\bigg)^n\bigg).</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|We can interchange limits and continuous functions.
 +
|-
 +
|Therefore, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y} & = & \displaystyle{\lim_{n\rightarrow \infty} \ln \bigg(1-\frac{4}{n}\bigg)^n}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} n\ln\bigg(1-\frac{4}{n}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}.}
 +
\end{array}</math>
 +
|-
 +
|Now, this limit has the form <math>\frac{0}{0}.</math>
 +
|-
 +
|Hence, we can use L'Hopital's Rule to calculate this limit.
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\ln y } & = & \displaystyle{\lim_{n\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{n}\bigg)}{\frac{1}{n}}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{\ln \bigg(1-\frac{4}{x}\bigg)}{\frac{1}{x}}}\\
 +
&&\\
 +
& \overset{L'H}{=} & \displaystyle{\lim_{x\rightarrow \infty} \frac{\frac{1}{\big(1-\frac{4}{x}\big)}\frac{4}{x^2}}{\big(-\frac{1}{x^2}\big)}}\\
 +
&&\\
 +
& = & \displaystyle{\lim_{x\rightarrow \infty} \frac{-4x}{x-4}}\\
 +
&&\\
 +
& = & \displaystyle{-4.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
!Step 2: &nbsp;
+
!Step 4: &nbsp;
 +
|-
 +
|Since <math>\ln y= -4,</math> <math>y=e^{-4}.</math>
 
|-
 
|-
|
+
|Now, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim _{n\rightarrow \infty} \frac{1}{\big(\frac{n-4}{n}\big)^n}} & = & \displaystyle{\frac{\lim_{n\rightarrow \infty} 1}{\lim_{n\rightarrow \infty} \big(\frac{n-4}{n}\big)^n}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{e^{-4}}}\\
 +
&&\\
 +
& = & \displaystyle{e^4}
 +
\end{array}</math>
 
|}
 
|}
  
Line 67: Line 123:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)'''  
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>e^{4}</math>
 
|-
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{2}{3}</math>
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{2}{3}</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 11:57, 13 February 2017

Evaluate:

a)
b)


Foundations:  
L'Hopital's Rule
Sum formula for geometric series

Solution:

(a)

Step 1:  
Let

       

We then take the natural log of both sides to get
       
Step 2:  
We can interchange limits and continuous functions.
Therefore, we have

       

Now, this limit has the form
Hence, we can use L'Hopital's Rule to calculate this limit.
Step 3:  
Now, we have

       

Step 4:  
Since
Now, we have

       

(b)

Step 1:  
First, we not that this is a geometric series with
Since
this series converges.
Step 2:  
Now, we need to find the sum of this series.
The first term of the series is
Hence, the sum of the series is

       

Final Answer:  
    (a)    
    (b)    

Return to Sample Exam