Difference between revisions of "009C Sample Midterm 2, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
|-
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
\displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{\sqrt{n+1}x^{n+1}}{\sqrt{n}x^n}\bigg|}\\
+
\displaystyle{\lim_{n\rightarrow \infty}|\frac{a_{n+1}}{a_n}|} & = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{(x+1)^{n+1}}{\sqrt{n+1}}\frac{\sqrt{n}}{(x+1)^n}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg|\frac{\sqrt{n+1}}{\sqrt{n}}x\bigg|}\\
+
& = & \displaystyle{\lim_{n\rightarrow \infty} \bigg| (x+1)\frac{\sqrt{n}}{\sqrt{n+1}}\bigg|}\\
 
&&\\
 
&&\\
& = & \displaystyle{\lim_{n\rightarrow \infty} \sqrt{\frac{n+1}{n}}|x|}\\
+
& = & \displaystyle{\lim_{n\rightarrow \infty} |x+1|\frac{\sqrt{n}}{\sqrt{n+1}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\lim_{n\rightarrow \infty} \sqrt{\frac{n+1}{n}}}\\
+
& = & \displaystyle{|x+1|\lim_{n\rightarrow \infty} \sqrt{\frac{n}{n+1}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\sqrt{\lim_{n\rightarrow \infty} \frac{n+1}{n}}}\\
+
& = & \displaystyle{|x+1|\sqrt{\lim_{n\rightarrow \infty} \frac{n}{n+1}}}\\
 
&&\\
 
&&\\
& = & \displaystyle{|x|\sqrt{1}}\\
+
& = & \displaystyle{|x+1|\sqrt{1}}\\
 
&&\\
 
&&\\
&=& \displaystyle{|x|.}
+
&=& \displaystyle{|x+1|.}
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
Line 82: Line 82:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|The Ratio Test tells us this series is absolutely convergent if <math>|x|<1.</math>
+
|The Ratio Test tells us this series is absolutely convergent if <math>|x+1|<1.</math>
 
|-
 
|-
 
|Hence, the Radius of Convergence of this series is <math>R=1.</math>
 
|Hence, the Radius of Convergence of this series is <math>R=1.</math>
Line 92: Line 92:
 
|Now, we need to determine the interval of convergence.  
 
|Now, we need to determine the interval of convergence.  
 
|-
 
|-
|First, note that <math>|x|<1</math> corresponds to the interval <math>(-1,1).</math>
+
|First, note that <math>|x+1|<1</math> corresponds to the interval <math>(-2,0).</math>
 
|-
 
|-
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
 
|To obtain the interval of convergence, we need to test the endpoints of this interval
Line 102: Line 102:
 
!Step 4: &nbsp;
 
!Step 4: &nbsp;
 
|-
 
|-
|First, let <math>x=1.</math>  
+
|First, let <math>x=0.</math>  
 
|-
 
|-
|Then, the series becomes <math>\sum_{n=0}^\infty \sqrt{n}.</math>
+
|Then, the series becomes <math>\sum_{n=0}^\infty \frac{1}{\sqrt{n}}.</math>
 
|-
 
|-
|We note that
+
|We note that this is a <math>p</math>-series with <math>p=\frac{1}{2}.</math>
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty.</math>
+
|Since <math>p<1,</math> the series diverges.
 
|-
 
|-
|Therefore, the series diverges by the <math>n</math>th term test.
+
|Hence, we do not include <math>x=0</math> in the interval.
|-
 
|Hence, we do not include <math>x=1</math> in the interval.
 
 
|}
 
|}
  
Line 118: Line 116:
 
!Step 5: &nbsp;
 
!Step 5: &nbsp;
 
|-
 
|-
|Now, let <math>x=-1.</math>
+
|Now, let <math>x=-2.</math>
 +
|-
 +
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \frac{1}{\sqrt{n}}.</math>
 +
|-
 +
|This series is alternating.
 +
|-
 +
|Let <math>b_n=\frac{1}{\sqrt{n}}.</math>
 +
|-
 +
|The sequence <math>\{b_n\}</math> is decreasing since
 
|-
 
|-
|Then, the series becomes <math>\sum_{n=0}^\infty (-1)^n \sqrt{n}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{1}{\sqrt{n+1}}<\frac{1}{\sqrt{n}}</math>
 
|-
 
|-
|Since <math>\lim_{n\rightarrow \infty} \sqrt{n}=\infty,</math>
+
|for all <math>n\ge 1.</math>
 
|-
 
|-
|we have
+
|Also,
 
|-
 
|-
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} (-1)^n\sqrt{n}=</math>DNE.
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\lim_{n\rightarrow \infty} b_n=\lim_{n\rightarrow \infty} \frac{1}{\sqrt{n}}=0.</math>
 
|-
 
|-
|Therefore, the series diverges by the <math>n</math>th term test.
+
|Therefore, the series converges by the Alternating Series Test.
 
|-
 
|-
|Hence, we do not include <math>x=-1 </math> in the interval.
+
|Hence, we include <math>x=-2</math> in our interval of convergence.
 
|}
 
|}
  
Line 136: Line 142:
 
!Step 6: &nbsp;
 
!Step 6: &nbsp;
 
|-
 
|-
|The interval of convergence is <math>(-1,1).</math>
+
|The interval of convergence is <math>[-2,0).</math>
 
|}
 
|}
  
Line 145: Line 151:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math>
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; The radius of convergence is <math>R=0</math> and the interval of convergence is <math>\{0\}.</math>
 
|-
 
|-
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>(2,4].</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; The radius of convergence is <math>R=1</math> and the interval fo convergence is <math>[-2,0).</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:47, 13 February 2017

Find the radius of convergence and interval of convergence of the series.

a)
b)


Foundations:  
Root Test
Ratio Test


Solution:

(a)

Step 1:  
We begin by applying the Root Test.
We have

       

Step 2:  
This means that as long as this series diverges.
Hence, the radius of convergence is and
the interval of convergence is

(b)

Step 1:  
We first use the Ratio Test to determine the radius of convergence.
We have
       
Step 2:  
The Ratio Test tells us this series is absolutely convergent if
Hence, the Radius of Convergence of this series is
Step 3:  
Now, we need to determine the interval of convergence.
First, note that corresponds to the interval
To obtain the interval of convergence, we need to test the endpoints of this interval
for convergence since the Ratio Test is inconclusive when
Step 4:  
First, let
Then, the series becomes
We note that this is a -series with
Since the series diverges.
Hence, we do not include in the interval.
Step 5:  
Now, let
Then, the series becomes
This series is alternating.
Let
The sequence is decreasing since
       
for all
Also,
       
Therefore, the series converges by the Alternating Series Test.
Hence, we include in our interval of convergence.
Step 6:  
The interval of convergence is


Final Answer:  
    (a)     The radius of convergence is and the interval of convergence is
    (b)     The radius of convergence is and the interval fo convergence is

Return to Sample Exam