Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|From Part (a), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 75: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|We now calculate <math>\lim_{n\rightarrow \infty} s_n.</math>
|-
 
|
 
 
|-
 
|-
|
+
|We get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} 2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{2^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 89: Line 89:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 13:10, 12 February 2017

Consider the infinite series

a) Find an expression for the Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} th partial sum Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n} of the series.
b) Compute Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} s_n.}


Foundations:  
The Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} th partial sum, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n} for a series Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^\infty a_n }
is defined as

        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=\sum_{i=1}^n a_i.}

Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2} . We have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2=2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg).}
Step 2:  
Next, we calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_3} and Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_4.} We have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_3} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)}\\ &&\\ & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^4}\bigg)} \end{array}}
and
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{s_4} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)+2\bigg(\frac{1}{2^4}-\frac{1}{2^5}\bigg)}\\ &&\\ & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^5}\bigg).} \end{array}}
Step 3:  
If we look at Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_2,s_3,s_4, } we notice a pattern.
From this pattern, we get the formula
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).}

(b)

Step 1:  
From Part (a), we have
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).}
Step 2:  
We now calculate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n\rightarrow \infty} s_n.}
We get
        Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} 2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}\\ &&\\ & = & \displaystyle{\frac{2}{2^2}}\\ &&\\ & = & \displaystyle{\frac{1}{2}.} \end{array}}
Final Answer:  
    (a)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}
    (b)     Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{2}}

Return to Sample Exam