Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 63: Line 63:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|From Part (a), we have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  
Line 75: Line 71:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|  
+
|We now calculate <math>\lim_{n\rightarrow \infty} s_n.</math>
|-
 
|
 
 
|-
 
|-
|
+
|We get
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\lim_{n\rightarrow \infty} s_n} & = & \displaystyle{\lim_{n\rightarrow \infty} 2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\frac{2}{2^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{1}{2}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 89: Line 89:
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)</math>  
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg)</math>  
 
|-
 
|-
|'''(b)'''  
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{1}{2}</math>
 
|}
 
|}
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009C_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 14:10, 12 February 2017

Consider the infinite series

a) Find an expression for the th partial sum of the series.
b) Compute


Foundations:  
The th partial sum, for a series
is defined as

       

Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating . We have
       
Step 2:  
Next, we calculate and We have
       
and
       
Step 3:  
If we look at we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
From Part (a), we have
       
Step 2:  
We now calculate
We get
       
Final Answer:  
    (a)    
    (b)    

Return to Sample Exam