Difference between revisions of "009C Sample Midterm 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
 
|Next, we calculate <math>s_3</math> and <math>s_4.</math> We have
 
|-
 
|-
|
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_3} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^4}\bigg)}
 +
\end{array}</math>
 +
|-
 +
|and
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{s_4} & = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^3}\bigg)+2\bigg(\frac{1}{2^3}-\frac{1}{2^4}\bigg)+2\bigg(\frac{1}{2^4}-\frac{1}{2^5}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{2\bigg(\frac{1}{2^2}-\frac{1}{2^5}\bigg).}
 +
\end{array}</math>
 +
|}
 +
 
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|If we look at <math>s_2,s_3,s_4, </math> we notice a pattern.
 +
|-
 +
|From this pattern, we get the formula
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; <math>s_n=2\bigg(\frac{1}{2^2}-\frac{1}{2^{n+1}}\bigg).</math>
 
|}
 
|}
  

Revision as of 13:59, 12 February 2017

Consider the infinite series

a) Find an expression for the th partial sum of the series.
b) Compute


Foundations:  
The th partial sum, for a series
is defined as

       

Solution:

(a)

Step 1:  
We need to find a pattern for the partial sums in order to find a formula.
We start by calculating . We have
       
Step 2:  
Next, we calculate and We have
       
and
       
Step 3:  
If we look at we notice a pattern.
From this pattern, we get the formula
       

(b)

Step 1:  
Step 2:  
Final Answer:  
(a)
(b)

Return to Sample Exam