Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 10: Line 10:
 
|'''1.''' Recall the trig identity
 
|'''1.''' Recall the trig identity
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -3px">\tan^2x+1=\sec^2x</math>
 
|-
 
|-
 
|'''2.''' Recall the trig identity
 
|'''2.''' Recall the trig identity
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}</math>
 
|-
 
|-
 
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
|'''3.''' How would you integrate <math style="vertical-align: -1px">\tan x~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution.  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; First, write <math style="vertical-align: -14px">\int \tan x~dx=\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> Thus,  
+
&nbsp; &nbsp; &nbsp; &nbsp; Now, let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp; Thus,  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 
\displaystyle{\int \tan x~dx} & = & \displaystyle{\int \frac{-1}{u}~du}\\
 
&&\\
 
&&\\
Line 44: Line 48:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math>  
 
|-
 
|-
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\
 
&&\\
 
&&\\
Line 62: Line 66:
 
|-
 
|-
 
|
 
|
Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have
+
Let <math style="vertical-align: -5px">u=\tan(x).</math>  
 +
|-
 +
|Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math>  
 +
|-
 +
|So, we have
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\
 
&&\\
 
&&\\
Line 82: Line 90:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
+
&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math>
 
|-
 
|-
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math>  
+
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math>  
 +
|-
 +
|Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math>  
 
|-
 
|-
 
|Therefore, we get  
 
|Therefore, we get  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\
 
&&\\
 
&&\\
Line 106: Line 116:
 
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get  
 
|Solving for <math style="vertical-align: -5px">\sin^2(x),</math> we get  
 
|-
 
|-
|&nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
+
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\sin^2(x)=\frac{1-\cos(2x)}{2}.</math>
 
|-
 
|-
 
|Plugging this identity into our integral, we get  
 
|Plugging this identity into our integral, we get  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\
 
&&\\
 
&&\\
Line 124: Line 134:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\
 
&&\\
 
&&\\
Line 136: Line 146:
 
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
 
|For the remaining integral, we need to use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -1px">u=2x.</math> Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
+
|Let <math style="vertical-align: -1px">u=2x.</math>  
 +
|-
 +
|Then, <math style="vertical-align: -1px">du=2~dx</math> and <math style="vertical-align: -18px">\frac{du}{2}=dx.</math>  
 
|-
 
|-
 
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution,  
 
|Also, since this is a definite integral and we are using <math style="vertical-align: 0px">u</math>-substitution,  
Line 147: Line 159:
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp;<math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\
 
&&\\
 
&&\\
Line 162: Line 174:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|'''(a)''' &nbsp; <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
+
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math>
 
|-
 
|-
|'''(b)''' &nbsp; <math>\frac{\pi}{2}</math>
+
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>\frac{\pi}{2}</math>
 
|}
 
|}
  
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 18:44, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
1. Recall the trig identity
       
2. Recall the trig identity
       
3. How would you integrate

        You could use -substitution.

        First, write

        Now, let Then,

        Thus,

       


Solution:

(a)

Step 1:  
We start by writing

       

Since we have

       

Step 2:  
Now, we need to use -substitution for the first integral.

Let

Then,
So, we have

       

Step 3:  
For the remaining integral, we also need to use -substitution.
First, we write

       

Now, we let
Then,
Therefore, we get

       

(b)

Step 1:  
One of the double angle formulas is
Solving for we get
       
Plugging this identity into our integral, we get

       

Step 2:  
If we integrate the first integral, we get

       

Step 3:  
For the remaining integral, we need to use -substitution.
Let
Then, and
Also, since this is a definite integral and we are using -substitution,
we need to change the bounds of integration.
We have and
So, the integral becomes

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam