Difference between revisions of "009B Sample Midterm 3, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> | + | |What does Part 1 of the Fundamental Theorem of Calculus |
| + | |- | ||
| + | |say is the derivative of <math style="vertical-align: -16px">G(x)=\int_x^5 \frac{1}{1+u^{10}}~du?</math> | ||
|- | |- | ||
| | | | ||
| − | First, we need to switch the bounds of integration. | + | First, we need to switch the bounds of integration. |
|- | |- | ||
| | | | ||
| − | So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> | + | So, we have <math style="vertical-align: -16px">G(x)=-\int_5^x \frac{1}{1+u^{10}}~du.</math> |
|- | |- | ||
| | | | ||
| − | By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> | + | By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math> |
|} | |} | ||
| Line 38: | Line 40: | ||
|- | |- | ||
| | | | ||
| − | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|} | |} | ||
| Line 46: | Line 48: | ||
|First, | |First, | ||
|- | |- | ||
| − | | <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> | + | | <math style="vertical-align: -15px">F(x)=-\int_5^{\cos (x)} \frac{1}{1+u^{10}}~du.</math> |
|- | |- | ||
|Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | |Now, let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -15px">G(x)=\int_5^x \frac{1}{1+u^{10}}~du.</math> | ||
| Line 53: | Line 55: | ||
|- | |- | ||
| | | | ||
| − | <math style="vertical-align: -5px">F(x)=-G(g(x)).</math> | + | <math style="vertical-align: -5px">F(x)=-G(g(x)).</math> |
|- | |- | ||
|Hence, | |Hence, | ||
|- | |- | ||
| − | | <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> | + | | <math style="vertical-align: -5px">F'(x)=-G'(g(x))g'(x)</math> |
|- | |- | ||
|by the Chain Rule. | |by the Chain Rule. | ||
| Line 65: | Line 67: | ||
!Step 3: | !Step 3: | ||
|- | |- | ||
| − | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x).</math> | + | |Now, |
| + | |- | ||
| + | | <math style="vertical-align: -5px">g'(x)=-\sin(x).</math> | ||
|- | |- | ||
|By the Fundamental Theorem of Calculus, | |By the Fundamental Theorem of Calculus, | ||
|- | |- | ||
| | | | ||
| − | <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math> | + | <math style="vertical-align: -15px">G'(x)=\frac{1}{1+x^{10}}.</math> |
|- | |- | ||
|Hence, | |Hence, | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ | \displaystyle{F'(x)} & = & \displaystyle{-\frac{1}{1+\cos^{10}x}(-\sin(x))}\\ | ||
&&\\ | &&\\ | ||
| Line 100: | Line 104: | ||
|- | |- | ||
| | | | ||
| − | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> | + | <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math> |
|- | |- | ||
| − | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> | + | | <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 18:34, 7 February 2017
State the fundamental theorem of calculus, and use this theorem to find the derivative of
| Foundations: |
|---|
| What does Part 1 of the Fundamental Theorem of Calculus |
| say is the derivative of |
|
First, we need to switch the bounds of integration. |
|
So, we have |
|
By Part 1 of the Fundamental Theorem of Calculus, |
Solution:
| Step 1: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
|
Let be continuous on and let |
|
Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
|
Let be continuous on and let be any antiderivative of Then, |
|
|
| Step 2: |
|---|
| First, |
| Now, let and |
| Therefore, |
|
|
| Hence, |
| by the Chain Rule. |
| Step 3: |
|---|
| Now, |
| By the Fundamental Theorem of Calculus, |
|
|
| Hence, |
|
|
| Final Answer: |
|---|
| The Fundamental Theorem of Calculus, Part 1 |
|
Let be continuous on and let |
|
Then, is a differentiable function on and |
| The Fundamental Theorem of Calculus, Part 2 |
|
Let be continuous on and let be any antiderivative of Then, |
|
|