Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 7: | Line 7: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| − | |||
| − | |||
|- | |- | ||
|'''1.''' Recall the trig identity | |'''1.''' Recall the trig identity | ||
|- | |- | ||
| − | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
|- | |- | ||
|'''2.''' Also, | |'''2.''' Also, | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | + | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> |
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
| + | |- | ||
| + | | Let <math style="vertical-align: -2px">u=\tan x.</math> | ||
| + | |- | ||
| + | | Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | ||
|- | |- | ||
| | | | ||
| − | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | + | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> |
|} | |} | ||
Revision as of 17:30, 7 February 2017
Evaluate the integral:
| Foundations: |
|---|
| 1. Recall the trig identity |
| 2. Also, |
| 3. How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
Solution:
| Step 1: |
|---|
| First, we write |
| Using the trig identity |
| we have |
| Plugging in the last identity into one of the we get |
|
|
| by using the identity again on the last equality. |
| Step 2: |
|---|
| So, we have |
| For the first integral, we need to use -substitution. |
| Let |
| Then, |
| So, we have |
| Step 3: |
|---|
| We integrate to get |
|
|
| Final Answer: |
|---|