Difference between revisions of "009B Sample Midterm 1, Problem 4"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 14: | Line 14: | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
| + | |- | ||
| + | |Let <math style="vertical-align: -2px">u=\sin x.</math> | ||
|- | |- | ||
| Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus, | | Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus, | ||
| Line 76: | Line 78: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> | + | | <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 15:56, 7 February 2017
Evaluate the integral:
| Foundations: |
|---|
| 1. Recall the trig identity |
| 2. How would you integrate |
|
You could use -substitution. |
| Let |
| Then, Thus, |
|
|
Solution:
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.} |
| Using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1,} |
| we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x.} |
| If we use this identity, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ &&\\ & = & \displaystyle{\int (\cos^2x-\cos^4x)\sin(x)~dx.} \end{array}} |
| Step 2: |
|---|
| Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x).} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin(x)dx.} |
| Therefore, |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ &&\\ & = & \displaystyle{\frac{-u^3}{3}+\frac{u^5}{5}+C}\\ &&\\ & = & \displaystyle{\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C} |