Difference between revisions of "009B Sample Midterm 1, Problem 4"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 7: | Line 7: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | |'''1.''' Recall the trig identity | + | |'''1.''' Recall the trig identity |
|- | |- | ||
| − | | <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math> | + | | <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math> |
|- | |- | ||
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> | |'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math> | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math> |
|- | |- | ||
| − | | Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus, | + | | Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus, |
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\ | \displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\ | ||
&&\\ | &&\\ | ||
| Line 35: | Line 35: | ||
|First, we write | |First, we write | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> | + | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math> |
|- | |- | ||
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> | |Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math> | ||
| Line 44: | Line 44: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ | \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ | ||
&&\\ | &&\\ | ||
| Line 56: | Line 56: | ||
|Now, we use <math style="vertical-align: 0px">u</math>-substitution. | |Now, we use <math style="vertical-align: 0px">u</math>-substitution. | ||
|- | |- | ||
| − | |Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> | + | |Let <math style="vertical-align: -5px">u=\cos(x).</math> |
| + | |- | ||
| + | |Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math> | ||
|- | |- | ||
|Therefore, | |Therefore, | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ | \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ | ||
&&\\ | &&\\ | ||
| Line 74: | Line 76: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> | + | | <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 15:54, 7 February 2017
Evaluate the integral:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^3x \cos^2x~dx}
| Foundations: |
|---|
| 1. Recall the trig identity |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1} |
| 2. How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^2x\cos x~dx?} |
|
You could use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\sin x.} |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=\cos x~dx.} Thus, |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\ &&\\ & = & \displaystyle{\frac{u^3}{3}+C}\\ &&\\ & = & \displaystyle{\frac{\sin^3x}{3}+C.} \end{array}} |
Solution:
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.} |
| Using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1,} |
| we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x.} |
| If we use this identity, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\ &&\\ & = & \displaystyle{\int (\cos^2x-\cos^4x)\sin(x)~dx.} \end{array}} |
| Step 2: |
|---|
| Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. |
| Let |
| Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin(x)dx.} |
| Therefore, |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\ &&\\ & = & \displaystyle{\frac{-u^3}{3}+\frac{u^5}{5}+C}\\ &&\\ & = & \displaystyle{\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.} \end{array}} |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C} |