Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 7: Line 7:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Recall the trig identity:
+
|'''1.''' Recall the trig identity
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -14px">\int \sin^2x\cos x~dx?</math>
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math>  
+
&nbsp; &nbsp; &nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\sin x.</math>  
 
|-
 
|-
|&nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus,  
+
|&nbsp; &nbsp; &nbsp; &nbsp; Then, <math style="vertical-align: -1px">du=\cos x~dx.</math> Thus,  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\
 
\displaystyle{\int \sin^2x\cos x~dx} & = & \displaystyle{\int u^2~du}\\
 
&&\\
 
&&\\
Line 35: Line 35:
 
|First, we write  
 
|First, we write  
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
+
| &nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx.</math>
 
|-
 
|-
 
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
 
|Using the identity <math style="vertical-align: -4px">\sin^2x+\cos^2x=1,</math>  
Line 44: Line 44:
 
|-
 
|-
 
|  
 
|  
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\
 
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int (\sin x) (1-\cos^2x)\cos^2x~dx}\\
 
&&\\
 
&&\\
Line 56: Line 56:
 
|Now, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|Now, we use <math style="vertical-align: 0px">u</math>-substitution.  
 
|-
 
|-
|Let <math style="vertical-align: -5px">u=\cos(x).</math> Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
+
|Let <math style="vertical-align: -5px">u=\cos(x).</math>  
 +
|-
 +
|Then, <math style="vertical-align: -5px">du=-\sin(x)dx.</math>  
 
|-
 
|-
 
|Therefore,  
 
|Therefore,  
 
|-
 
|-
 
|
 
|
&nbsp; &nbsp; <math>\begin{array}{rcl}
+
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\
 
\displaystyle{\int\sin^3x\cos^2x~dx} & = & \displaystyle{\int -(u^2-u^4)~du}\\
 
&&\\
 
&&\\
Line 74: Line 76:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
| &nbsp;&nbsp; <math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
+
| &nbsp;&nbsp; &nbsp; &nbsp;<math>\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:54, 7 February 2017

Evaluate the integral:


Foundations:  
1. Recall the trig identity
       
2. How would you integrate

        You could use -substitution. Let

        Then, Thus,

       


Solution:

Step 1:  
First, we write
       
Using the identity
we get
If we use this identity, we have

       

Step 2:  
Now, we use -substitution.
Let
Then,
Therefore,

       


Final Answer:  
      

Return to Sample Exam