Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 11: | Line 11: | ||
|- | |- | ||
| | | | ||
| − | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> | + | You could use <math style="vertical-align: 0px">u</math>-substitution. |
| + | |- | ||
| + | | Let <math style="vertical-align: -5px">u=\ln(x).</math> | ||
| + | |- | ||
| + | | Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math> | ||
|- | |- | ||
| | | | ||
| − | Thus, <math | + | Thus, |
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\int \frac{\ln x}{x}~dx} & = & \displaystyle{\int u~du}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{u^2}{2}+C}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\frac{(\ln x)^2}{2}+C.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 30: | Line 43: | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> | + | | <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> |
|} | |} | ||
| Line 36: | Line 49: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |We now have | + | |We now have |
|- | |- | ||
| − | | <math>\begin{array}{rcl} | + | | <math>\begin{array}{rcl} |
\displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\ | \displaystyle{\int x^2\sqrt{1+x^3}~dx} & = & \displaystyle{\frac{1}{3}\int \sqrt{u}~du}\\ | ||
&&\\ | &&\\ | ||
| Line 51: | Line 64: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |We need to use <math>u</math>-substitution. |
| + | |- | ||
| + | |Let <math style="vertical-align: -5px">u=\sin(x).</math> | ||
| + | |- | ||
| + | |Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> | ||
|- | |- | ||
|Also, we need to change the bounds of integration. | |Also, we need to change the bounds of integration. | ||
| Line 61: | Line 78: | ||
|Therefore, the integral becomes | |Therefore, the integral becomes | ||
|- | |- | ||
| − | | <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> | + | | <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> |
|} | |} | ||
| Line 70: | Line 87: | ||
|- | |- | ||
| | | | ||
| − | <math>\begin{array}{rcl} | + | <math>\begin{array}{rcl} |
\displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\ | \displaystyle{\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du}\\ | ||
&&\\ | &&\\ | ||
| Line 85: | Line 102: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> | + | | '''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> |
|- | |- | ||
| − | |'''(b)''' <math>-1+\sqrt{2}</math> | + | | '''(b)''' <math>-1+\sqrt{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 16:31, 7 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
| Foundations: |
|---|
| How would you integrate |
|
You could use -substitution. |
| Let |
| Then, |
|
Thus, |
|
|
Solution:
(a)
| Step 1: |
|---|
| We need to use -substitution. Let |
| Then, and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have |
(b)
| Step 1: |
|---|
| We need to use -substitution. |
| Let |
| Then, |
| Also, we need to change the bounds of integration. |
| Plugging in our values into the equation |
| we get and |
| Therefore, the integral becomes |
| Step 2: |
|---|
| We now have: |
|
|
| Final Answer: |
|---|
| (a) |
| (b) |