Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
|-
 
|-
 
|
 
|
'''1.''' The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
+
'''1.''' The height of each rectangle in the right-hand Riemann sum  
 +
|-
 +
|    is given by choosing the right endpoint of the interval.
 
|-
 
|-
 
|
 
|
Line 19: Line 21:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math> Each interval has length <math>\frac{\pi}{4}.</math>  
+
|Let <math style="vertical-align: -5px">f(x)=\sin(x).</math>  
 +
|-
 +
|Each interval has length <math>\frac{\pi}{4}.</math>  
 
|-
 
|-
|So, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
+
|Therefore, the right-endpoint Riemann sum of <math style="vertical-align: -5px">f(x)</math> on the interval <math style="vertical-align: -5px">[0,\pi]</math> is
 
|-
 
|-
 
|
 
|

Revision as of 10:09, 7 February 2017

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  
Recall:

1. The height of each rectangle in the right-hand Riemann sum

    is given by choosing the right endpoint of the interval.

2. See the Riemann sums (insert link) for more information.


Solution:

Step 1:  
Let
Each interval has length
Therefore, the right-endpoint Riemann sum of on the interval is

   

Step 2:  
Thus, the right-endpoint Riemann sum is

   


Final Answer:  
  

Return to Sample Exam