Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 10: | Line 10: | ||
|Recall: | |Recall: | ||
|- | |- | ||
− | |'''1.''' | + | |'''1.''' Recall the trig identity |
|- | |- | ||
− | |'''2.''' <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | + | | <math style="vertical-align: -1px">\sec^2x=\tan^2x+1</math> |
+ | |- | ||
+ | |'''2.''' Also, | ||
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int \sec^2 x~dx=\tan x+C</math> | ||
|- | |- | ||
|'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | |'''3.''' How would you integrate <math style="vertical-align: -12px">\int \sec^2(x)\tan(x)~dx?</math> | ||
|- | |- | ||
| | | | ||
− | + | You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=\tan x.</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> | |
|- | |- | ||
| | | | ||
− | + | Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | |
|} | |} | ||
Line 28: | Line 32: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we write <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> | + | |First, we write |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> | ||
|- | |- | ||
− | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | + | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> |
+ | |- | ||
+ | |we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> | ||
|- | |- | ||
|Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get | ||
|- | |- | ||
− | | <math | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\int \tan^2(x) (\sec^2(x)-1)~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx} | ||
+ | \end{array}</math> | ||
|- | |- | ||
|by using the identity again on the last equality. | |by using the identity again on the last equality. | ||
Line 42: | Line 57: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |So, we have <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> | + | |So, we have |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> | ||
+ | |- | ||
+ | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. | ||
+ | |- | ||
+ | |Let <math style="vertical-align: -5px">u=\tan(x).</math> | ||
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
Line 56: | Line 77: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | | <math | + | | |
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\int \tan^4(x)~dx} & = & \displaystyle{\frac{u^3}{3}-(\tan(x)-x)+C}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{\tan^3(x)}{3}-\tan(x)+x+C.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Revision as of 09:57, 7 February 2017
Evaluate the integral:
Foundations: |
---|
Recall: |
1. Recall the trig identity |
2. Also, |
3. How would you integrate |
You could use -substitution. Let Then, |
Thus, |
Solution:
Step 1: |
---|
First, we write |
Using the trig identity |
we have |
Plugging in the last identity into one of the we get |
|
by using the identity again on the last equality. |
Step 2: |
---|
So, we have |
For the first integral, we need to use -substitution. |
Let |
Then, |
So, we have |
Step 3: |
---|
We integrate to get |
|
Final Answer: |
---|