Difference between revisions of "009B Sample Midterm 1, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 23: Line 23:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the left-hand Riemann sum is  
+
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1.  
 +
|-
 +
|So, the left-hand Riemann sum is  
 
|-
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math>
 
| &nbsp;&nbsp; <math style="vertical-align: 0px">1(f(0)+f(1)+f(2)).</math>
|-
 
|
 
 
|}
 
|}
  
Line 42: Line 42:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1. So, the right-hand Riemann sum is
+
|Since our interval is <math style="vertical-align: -5px">[0,3]</math> and we are using 3 rectangles, each rectangle has width 1.  
 +
|-
 +
|So, the right-hand Riemann sum is
 
|-
 
|-
 
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math>  
 
| &nbsp;&nbsp; <math style="vertical-align: -5px">1(f(1)+f(2)+f(3)).</math>  
|-
 
|
 
 
|}
 
|}
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 62: Line 62:
 
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math>
 
|Let <math style="vertical-align: 0px">n</math> be the number of rectangles used in the right-hand Riemann sum for <math style="vertical-align: -5px">f(x)=1-x^2.</math>
 
|-
 
|-
|The width of each rectangle is <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math>
+
|The width of each rectangle is  
|-
 
|
 
 
|-
 
|-
|
+
| &nbsp; &nbsp; <math style="vertical-align: -13px">\Delta x=\frac{3-0}{n}=\frac{3}{n}.</math>
 
|}
 
|}
  

Revision as of 09:23, 7 February 2017

Let .

a) Compute the left-hand Riemann sum approximation of with boxes.
b) Compute the right-hand Riemann sum approximation of with boxes.
c) Express as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Foundations:  
1. The height of each rectangle in the left-hand Riemann sum is given by choosing the left endpoint of the interval.
2. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
3. See the Riemann sums (insert link) for more information.


Solution:

(a)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the left-hand Riemann sum is
  
Step 2:  
Thus, the left-hand Riemann sum is
  

(b)

Step 1:  
Since our interval is and we are using 3 rectangles, each rectangle has width 1.
So, the right-hand Riemann sum is
  
Step 2:  
Thus, the right-hand Riemann sum is
  

(c)

Step 1:  
Let be the number of rectangles used in the right-hand Riemann sum for
The width of each rectangle is
   
Step 2:  
So, the right-hand Riemann sum is
  
Finally, we let go to infinity to get a limit.
Thus, is equal to


Final Answer:  
(a)  
(b)  
(c)  

Return to Sample Exam