Difference between revisions of "009B Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
+
|'''1.''' Integration by parts tells us that  
 +
|-
 +
|&nbsp; &nbsp; <math style="vertical-align: -12px">\int u~dv=uv-\int v~du.</math>
 
|-
 
|-
 
|'''2.''' How would you integrate <math style="vertical-align: -12px">\int x\ln x~dx?</math>
 
|'''2.''' How would you integrate <math style="vertical-align: -12px">\int x\ln x~dx?</math>
 
|-
 
|-
 
|
 
|
::You could use integration by parts.
+
&nbsp; &nbsp; You could use integration by parts.
 
|-
 
|-
 
|
 
|
::Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
+
&nbsp; &nbsp; Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x~dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -12px">v=\frac{x^2}{2}.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -15px">\int x\ln x~dx=\frac{x^2\ln x}{2}-\int \frac{x}{2}~dx=\frac{x^2\ln x}{2}-\frac{x^2}{4}+C.</math>
+
&nbsp; &nbsp; Thus, <math style="vertical-align: -15px">\int x\ln x~dx=\frac{x^2\ln x}{2}-\int \frac{x}{2}~dx=\frac{x^2\ln x}{2}-\frac{x^2}{4}+C.</math>
 
|}
 
|}
  
Line 29: Line 31:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts. Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|We proceed using integration by parts.  
 +
|-
 +
|Let <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=2xdx</math> and <math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
Line 39: Line 43:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again. Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
+
|Now, we need to use integration by parts again.  
 +
|-
 +
|Let <math style="vertical-align: 0px">u=2x</math> and <math style="vertical-align: 0px">dv=e^xdx.</math> Then, <math style="vertical-align: 0px">du=2dx</math> and <math style="vertical-align: 0px">v=e^x.</math>
 
|-
 
|-
 
|Building on the previous step, we have
 
|Building on the previous step, we have
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -15px">\int x^2 e^x~dx=x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)=x^2e^x-2xe^x+2e^x+C.</math>
+
| &nbsp; &nbsp; <math>\begin{array}{rcl}
 +
\displaystyle{\int x^2 e^x~dx} & = & \displaystyle{x^2e^x-\bigg(2xe^x-\int 2e^x~dx\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{x^2e^x-2xe^x+2e^x+C.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 50: Line 60:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts. Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
+
|We proceed using integration by parts.  
 +
|-
 +
|Let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: 0px">dv=x^3dx.</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx</math> and <math style="vertical-align: -14px">v=\frac{x^4}{4}.</math>
 
|-
 
|-
 
|Therefore, we have
 
|Therefore, we have
 
|-
 
|-
| &nbsp;&nbsp; <math style="vertical-align: -20px">\int_{1}^{e} x^3\ln x~dx=\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx=\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}.</math>
+
|  
|-
+
&nbsp; &nbsp; <math>\begin{array}{rcl}
|
+
\displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)\right|_{1}^{e}-\int_1^e \frac{x^3}{4}~dx}\\
 +
&&\\
 +
& = & \displaystyle{\left.\ln x \bigg(\frac{x^4}{4}\bigg)-\frac{x^4}{16}\right|_{1}^{e}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 64: Line 79:
 
|Now, we evaluate to get  
 
|Now, we evaluate to get  
 
|-
 
|-
| &nbsp; &nbsp; <math style="vertical-align: -17px">\int_{1}^{e} x^3\ln x~dx=\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)=\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}=\frac{3e^4+1}{16}.</math>
+
| &nbsp; &nbsp; <math>\begin{array}{rcl}
|-
+
\displaystyle{\int_{1}^{e} x^3\ln x~dx} & = & \displaystyle{\bigg((\ln e) \frac{e^4}{4}-\frac{e^4}{16}\bigg)-\bigg((\ln 1) \frac{1^4}{4}-\frac{1^4}{16}\bigg)}\\
|
+
&&\\
|-
+
& = & \displaystyle{\frac{e^4}{4}-\frac{e^4}{16}+\frac{1}{16}}\\
|
+
&&\\
 +
& = & \displaystyle{\frac{3e^4+1}{16}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 09:13, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
1. Integration by parts tells us that
   
2. How would you integrate

    You could use integration by parts.

    Let and Then, and

    Thus,


Solution:

(a)

Step 1:  
We proceed using integration by parts.
Let and Then, and
Therefore, we have
  
Step 2:  
Now, we need to use integration by parts again.
Let and Then, and
Building on the previous step, we have
   

(b)

Step 1:  
We proceed using integration by parts.
Let and Then, and
Therefore, we have

   

Step 2:  
Now, we evaluate to get
   


Final Answer:  
(a)  
(b)  

Return to Sample Exam