Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 28: | Line 28: | ||
|Then, <math style="vertical-align: 0px">du=3x^2dx</math> and  <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math> | |Then, <math style="vertical-align: 0px">du=3x^2dx</math> and  <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math> | ||
|- | |- | ||
− | |Therefore, the integral becomes& | + | |Therefore, the integral becomes |
+ | |- | ||
+ | | <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> | ||
|} | |} | ||
Line 57: | Line 59: | ||
|we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> | |we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> | ||
|- | |- | ||
− | |Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> | + | |Therefore, the integral becomes |
+ | |- | ||
+ | | <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> | ||
|} | |} | ||
Revision as of 09:01, 7 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
How would you integrate |
You could use -substitution. Let Then, |
Thus, |
Solution:
(a)
Step 1: |
---|
We need to use -substitution. Let |
Then, and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
(b)
Step 1: |
---|
Again, we need to use -substitution. Let Then, |
Also, we need to change the bounds of integration. |
Plugging in our values into the equation |
we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
|
Final Answer: |
---|
(a) |
(b) |