Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 24: Line 24:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math> Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
+
|We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math>  
 +
|-
 +
|Then, <math style="vertical-align: 0px">du=3x^2dx</math> and&thinsp; <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math>
 
|-
 
|-
 
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
 
|Therefore, the integral becomes&thinsp; <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math>
Line 41: Line 43:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x).</math> Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> Also, we need to change the bounds of integration.
+
|Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x).</math> Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math>  
 +
|-
 +
|Also, we need to change the bounds of integration.
 +
|-
 +
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math>
 
|-
 
|-
|Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
+
|we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math>
 
|-
 
|-
 
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
 
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>

Revision as of 08:46, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate

    You could use -substitution. Let Then,

    Thus,


Solution:

(a)

Step 1:  
We need to use -substitution. Let
Then, and 
Therefore, the integral becomes 
Step 2:  
We now have:
   

(b)

Step 1:  
Again, we need to use -substitution. Let Then,
Also, we need to change the bounds of integration.
Plugging in our values into the equation
we get and
Therefore, the integral becomes
Step 2:  
We now have:
   


Final Answer:  
(a)  
(b)  

Return to Sample Exam