Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
|-
 
|-
 
|
 
|
::You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
+
&nbsp; &nbsp; You could use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\ln(x).</math> Then, <math style="vertical-align: -13px">du=\frac{1}{x}dx.</math>
 
|-
 
|-
 
|
 
|
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
+
&nbsp; &nbsp; Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
 
|}
 
|}
  
Line 46: Line 46:
 
|-
 
|-
 
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
 
|Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math>
|-
 
|
 
 
|}
 
|}
  
Line 56: Line 54:
 
|-
 
|-
 
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}.</math>
 
|&nbsp; &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}.</math>
|-
 
|
 
|-
 
|
 
 
|}
 
|}
  

Revision as of 08:42, 7 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate

    You could use -substitution. Let Then,

    Thus,


Solution:

(a)

Step 1:  
We need to use -substitution. Let Then, and 
Therefore, the integral becomes 
Step 2:  
We now have:
   

(b)

Step 1:  
Again, we need to use -substitution. Let Then, Also, we need to change the bounds of integration.
Plugging in our values into the equation we get and
Therefore, the integral becomes
Step 2:  
We now have:
   


Final Answer:  
(a)  
(b)  

Return to Sample Exam