Difference between revisions of "009B Sample Midterm 3, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 31: | Line 31: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 41: | Line 42: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -14px">\int \tan^3x~dx=\int \tan^2x\tan x ~dx.</math> | |
|- | |- | ||
|Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | |Since <math style="vertical-align: -5px">\tan^2x=\sec^2x-1,</math> we have | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int (\sec^2x-1)\tan x ~dx}\\ | ||
&&\\ | &&\\ | ||
Line 59: | Line 60: | ||
|- | |- | ||
| | | | ||
− | + | Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -1px">du=\sec^2x~dx.</math> So, we have | |
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\int u~du-\int \tan x~dx}\\ | ||
&&\\ | &&\\ | ||
Line 79: | Line 80: | ||
|- | |- | ||
| | | | ||
− | + | <math style="vertical-align: -14px">\int \tan^3x~dx=\frac{\tan^2x}{2}-\int \frac{\sin x}{\cos x}~dx.</math> | |
|- | |- | ||
|Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get | |Now, we let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> So, we get | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\ | \displaystyle{\int \tan^3x~dx} & = & \displaystyle{\frac{\tan^2x}{2}+\int \frac{1}{u}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 104: | Line 105: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\int_0^\pi \frac{1-\cos(2x)}{2}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 117: | Line 118: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\left.\frac{x}{2}\right|_{0}^\pi-\int_0^\pi \frac{\cos(2x)}{2}~dx}\\ | ||
&&\\ | &&\\ | ||
Line 138: | Line 139: | ||
|- | |- | ||
| | | | ||
− | + | <math>\begin{array}{rcl} | |
\displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\ | \displaystyle{\int_0^\pi \sin^2x~dx} & = & \displaystyle{\frac{\pi}{2}-\int_0^{2\pi} \frac{\cos(u)}{4}~du}\\ | ||
&&\\ | &&\\ | ||
Line 148: | Line 149: | ||
\end{array}</math> | \end{array}</math> | ||
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | |'''(a)''' <math>\frac{\tan^2x}{2}+\ln |\cos x|+C</math> |
|- | |- | ||
− | | | + | |'''(b)''' <math>\frac{\pi}{2}</math> |
|} | |} | ||
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']] |
Revision as of 09:55, 6 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
Recall the trig identities: |
1. |
2. |
How would you integrate |
|
|
|
Solution:
(a)
Step 1: |
---|
We start by writing |
|
Since we have |
|
Step 2: |
---|
Now, we need to use -substitution for the first integral. |
Let Then, So, we have |
|
Step 3: |
---|
For the remaining integral, we also need to use -substitution. |
First, we write |
|
Now, we let Then, So, we get |
|
(b)
Step 1: |
---|
One of the double angle formulas is |
Solving for we get |
Plugging this identity into our integral, we get |
|
Step 2: |
---|
If we integrate the first integral, we get |
|
Step 3: |
---|
For the remaining integral, we need to use -substitution. |
Let Then, and |
Also, since this is a definite integral and we are using -substitution, we need to change the bounds of integration. |
We have and |
So, the integral becomes |
|
Final Answer: |
---|
(a) |
(b) |