Difference between revisions of "009B Sample Midterm 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 34: Line 35:
 
|-
 
|-
 
|
 
|
::<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
+
&nbsp; &nbsp;<math>\int x^2\sin (x^3) ~dx=\int \frac{\sin(u)}{3}~du.</math>
 
|}
 
|}
  
Line 43: Line 44:
 
|-
 
|-
 
|
 
|
::::<math>\begin{array}{rcl}
+
&nbsp;&nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 
\displaystyle{\int x^2\sin (x^3) ~dx} & = & \displaystyle{\frac{-1}{3}\cos(u)+C}\\
 
&&\\
 
&&\\
Line 67: Line 68:
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
+
&nbsp; &nbsp;<math>\begin{array}{rcl}
 
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 
\displaystyle{\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx} & = & \displaystyle{\int_{\frac{\sqrt{2}}{2}}^{\frac{\sqrt{2}}{2}} -u^2~du}\\
 
&&\\
 
&&\\
Line 75: Line 76:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' <math>\frac{-1}{3}\cos(x^3)+C</math>
+
|'''(a)''' &nbsp; <math>\frac{-1}{3}\cos(x^3)+C</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' <math>0</math>
+
|'''(b)''' &nbsp; <math>0</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:51, 6 February 2017

Compute the following integrals:

a)  
b)  


Foundations:  
How would you integrate
You could use -substitution. Let Then, Thus,


Solution:

(a)

Step 1:  
We proceed using -substitution. Let Then, and
Therefore, we have

   

Step 2:  
We integrate to get

  

(b)

Step 1:  
Again, we proceed using u substitution. Let Then,
Since this is a definite integral, we need to change the bounds of integration.
We have and
Step 2:  
So, we get

   


Final Answer:  
(a)  
(b)  

Return to Sample Exam