Difference between revisions of "009B Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
 
::By Part 1 of the Fundamental Theorem of Calculus, <math style="vertical-align: -16px">G'(x)=-\frac{1}{1+x^{10}}.</math>  
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 77: Line 78:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''The Fundamental Theorem of Calculus, Part 1'''
+
|'''The Fundamental Theorem of Calculus, Part 1'''
 
|-
 
|-
 
|
 
|
:&nbsp;&nbsp; Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
+
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt.</math>
 
|-
 
|-
 
|
 
|
:&nbsp;&nbsp; Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
+
Then, <math style="vertical-align: -1px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math> and <math style="vertical-align: -5px">F'(x)=f(x).</math>
 
|-
 
|-
|&nbsp;&nbsp; '''The Fundamental Theorem of Calculus, Part 2'''
+
|'''The Fundamental Theorem of Calculus, Part 2'''
 
|-
 
|-
 
|
 
|
:&nbsp;&nbsp; Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
+
Let <math style="vertical-align: -5px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -1px">F</math> be any antiderivative of <math style="vertical-align: -5px">f.</math>
 
|-
 
|-
 
|
 
|
:&nbsp;&nbsp; Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
+
Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a).</math>
 
|-
 
|-
 
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|&nbsp;&nbsp; <math>F'(x)=\frac{\sin(x)}{1+\cos^{10}x}</math>
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 09:48, 6 February 2017

State the fundamental theorem of calculus, and use this theorem to find the derivative of


Foundations:  
What does Part 1 of the Fundamental Theorem of Calculus say is the derivative of
First, we need to switch the bounds of integration.
So, we have
By Part 1 of the Fundamental Theorem of Calculus,


Solution:

Step 1:  
The Fundamental Theorem of Calculus, Part 1
Let be continuous on and let
Then, is a differentiable function on and
The Fundamental Theorem of Calculus, Part 2
Let be continuous on and let be any antiderivative of
Then,
Step 2:  
First, we have
Now, let and
So,
Hence, by the Chain Rule.
Step 3:  
Now,
By the Fundamental Theorem of Calculus,
Hence,


Final Answer:  
The Fundamental Theorem of Calculus, Part 1

Let be continuous on and let

Then, is a differentiable function on and

The Fundamental Theorem of Calculus, Part 2

Let be continuous on and let be any antiderivative of

Then,

  

Return to Sample Exam