Difference between revisions of "009B Sample Midterm 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
::'''2.''' See the Riemann sums (insert link) for more information.
 
::'''2.''' See the Riemann sums (insert link) for more information.
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 23: Line 24:
 
|-
 
|-
 
|
 
|
::<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
+
&nbsp; &nbsp;<math>\frac{\pi}{4}\bigg(f\bigg(\frac{\pi}{4}\bigg)+f\bigg(\frac{\pi}{2}\bigg)+f\bigg(\frac{3\pi}{4}\bigg)+f(\pi)\bigg).</math>
 
|}
 
|}
  
Line 38: Line 39:
 
\end{array}</math>
 
\end{array}</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 09:44, 6 February 2017

Divide the interval into four subintervals of equal length and compute the right-endpoint Riemann sum of


Foundations:  
Recall:
1. The height of each rectangle in the right-hand Riemann sum is given by choosing the right endpoint of the interval.
2. See the Riemann sums (insert link) for more information.


Solution:

Step 1:  
Let Each interval has length
So, the right-endpoint Riemann sum of on the interval is

   

Step 2:  
Thus, the right-endpoint Riemann sum is


Final Answer:  
  

Return to Sample Exam