Difference between revisions of "009B Sample Midterm 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 22: | Line 22: | ||
::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | ::Thus, <math style="vertical-align: -15px">\int \sec^2(x)\tan(x)~dx=\int u~du=\frac{u^2}{2}+C=\frac{\tan^2x}{2}+C.</math> | ||
|} | |} | ||
| + | |||
'''Solution:''' | '''Solution:''' | ||
| Line 27: | Line 28: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we write <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx</math> | + | |First, we write <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) \tan^2(x)~dx.</math> |
|- | |- | ||
| − | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1</math> | + | |Using the trig identity <math style="vertical-align: -5px">\sec^2(x)=\tan^2(x)+1,</math> we have <math style="vertical-align: -5px">\tan^2(x)=\sec^2(x)-1.</math> |
|- | |- | ||
| − | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x)</math> | + | |Plugging in the last identity into one of the <math style="vertical-align: -5px">\tan^2(x),</math> we get |
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x) (\sec^2(x)-1)~dx=\int \tan^2(x)\sec^2(x)~dx-\int \tan^2(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math> |
|- | |- | ||
| − | |using the identity again on the last equality. | + | |by using the identity again on the last equality. |
|} | |} | ||
| Line 41: | Line 42: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |So, we have <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx</math> | + | |So, we have <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int \tan^2(x)\sec^2(x)~dx-\int (\sec^2x-1)~dx.</math> |
|- | |- | ||
| − | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\tan(x)</math> | + | |For the first integral, we need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -5px">u=\tan(x).</math> Then, <math style="vertical-align: -5px">du=\sec^2(x)dx.</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx=\int u^2~du-\int (\sec^2(x)-1)~dx.</math> |
|} | |} | ||
| Line 55: | Line 56: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
| − | | <math style="vertical-align: -13px">\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C</math> | + | | <math style="vertical-align: -13px">\int \tan^4(x)~dx= \frac{u^3}{3}-(\tan(x)-x)+C=\frac{\tan^3(x)}{3}-\tan(x)+x+C.</math> |
|} | |} | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Revision as of 09:35, 6 February 2017
Evaluate the integral:
| Foundations: |
|---|
| Recall: |
| 1. |
| 2. |
| How would you integrate |
|
|
Solution:
| Step 1: |
|---|
| First, we write |
| Using the trig identity we have |
| Plugging in the last identity into one of the we get |
| by using the identity again on the last equality. |
| Step 2: |
|---|
| So, we have |
| For the first integral, we need to use -substitution. Let Then, |
| So, we have |
| Step 3: |
|---|
| We integrate to get |
| Final Answer: |
|---|