Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 17: | Line 17: | ||
::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math> | ::Thus, <math style="vertical-align: -12px">\int (2x+1)\sqrt{x^2+x}~dx=\int \sqrt{u}=\frac{2}{3}u^{3/2}+C=\frac{2}{3}(x^2+x)^{3/2}+C.</math> | ||
|} | |} | ||
+ | |||
'''Solution:''' | '''Solution:''' | ||
Line 26: | Line 27: | ||
|We multiply the product inside the integral to get | |We multiply the product inside the integral to get | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt</math> | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\int_1^2 \bigg(8t^3-10+12-\frac{15}{t^3}\bigg)~dt=\int_1^2 (8t^3+2-15t^{-3})~dt.</math> |
|} | |} | ||
Line 34: | Line 35: | ||
|We integrate to get | |We integrate to get | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2</math> | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=\left. 2t^4+2t+\frac{15}{2}t^{-2}\right|_1^2.</math> |
|- | |- | ||
|We now evaluate to get | |We now evaluate to get | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}</math> | + | | <math style="vertical-align: -16px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt=2(2)^4+2(2)+\frac{15}{2(2)^2}-\bigg(2+2+\frac{15}{2}\bigg)=36+\frac{15}{8}-4-\frac{15}{2}=\frac{211}{8}.</math> |
|} | |} | ||
Line 45: | Line 46: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4</math> | + | |We use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=x^4+2x^2+4.</math> Then, <math style="vertical-align: -5px">du=(4x^3+4x)dx</math> and <math style="vertical-align: -14px">\frac{du}{4}=(x^3+x)dx.</math> Also, we need to change the bounds of integration. |
|- | |- | ||
− | |Plugging in our values into the equation <math style="vertical-align: - | + | |Plugging in our values into the equation <math style="vertical-align: -4px">u=x^4+2x^2+4,</math> we get <math style="vertical-align: -5px">u_1=0^4+2(0)^2+4=4</math> and <math style="vertical-align: -5px">u_2=2^4+2(2)^2+4=28.</math> |
|- | |- | ||
− | |Therefore, the integral becomes <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du</math> | + | |Therefore, the integral becomes <math style="vertical-align: -14px">\frac{1}{4}\int_4^{28}\sqrt{u}~du.</math> |
|- | |- | ||
| | | | ||
Line 59: | Line 60: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3)</math> | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{1}{4}\int_4^{28}\sqrt{u}~du=\left.\frac{1}{6}u^{\frac{3}{2}}\right|_4^{28}=\frac{1}{6}(28^{\frac{3}{2}}-4^{\frac{3}{2}})=\frac{1}{6}((\sqrt{28})^3-(\sqrt{4})^3)=\frac{1}{6}((2\sqrt{7})^3-2^3).</math> |
|- | |- | ||
|So, we have | |So, we have | ||
|- | |- | ||
− | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}</math> | + | | <math style="vertical-align: -16px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx=\frac{28\sqrt{7}-4}{3}.</math> |
|} | |} | ||
+ | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" |
Revision as of 09:29, 6 February 2017
Evaluate
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
Step 2: |
---|
We integrate to get |
We now evaluate to get |
(b)
Step 1: |
---|
We use -substitution. Let Then, and Also, we need to change the bounds of integration. |
Plugging in our values into the equation we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
So, we have |
Final Answer: |
---|
(a) |
(b) |