Difference between revisions of "009B Sample Midterm 2, Problem 2"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
<span class="exam"> Evaluate | <span class="exam"> Evaluate | ||
− | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> | + | ::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math> |
− | ::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> | + | ::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math> |
Revision as of 09:15, 6 February 2017
Evaluate
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We multiply the product inside the integral to get |
. |
Step 2: |
---|
We integrate to get |
. |
We now evaluate to get |
. |
(b)
Step 1: |
---|
We use -substitution. Let . Then, and . Also, we need to change the bounds of integration. |
Plugging in our values into the equation , we get and . |
Therefore, the integral becomes . |
Step 2: |
---|
We now have: |
. |
So, we have |
. |
Final Answer: |
---|
(a) |
(b) |