Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math>
 
::Thus, <math style="vertical-align: -14px">\int \sin^2x\cos x~dx=\int u^2~du=\frac{u^3}{3}+C=\frac{\sin^3x}{3}+C.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 40: Line 41:
 
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math>
 
| &nbsp;&nbsp; <math style="vertical-align: -14px">\int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C.</math>
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 09:12, 6 February 2017

Evaluate the integral:


Foundations:  
Recall the trig identity:
How would you integrate
You could use -substitution. Let Then,
Thus,


Solution:

Step 1:  
First, we write
   
Using the identity we get If we use this identity, we have
   
Step 2:  
Now, we use -substitution. Let Then, Therefore,
  


Final Answer:  
  

Return to Sample Exam