Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
 
::Thus, <math style="vertical-align: -12px">\int \frac{\ln x}{x}~dx=\int u~du=\frac{u^2}{2}+C=\frac{(\ln x)^2}{2}+C.</math>
 
|}
 
|}
 +
  
 
'''Solution:'''
 
'''Solution:'''
Line 60: Line 61:
 
|
 
|
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 09:09, 6 February 2017

Evaluate the indefinite and definite integrals.

a)  
b)  


Foundations:  
How would you integrate
You could use -substitution. Let Then,
Thus,


Solution:

(a)

Step 1:  
We need to use -substitution. Let Then, and 
Therefore, the integral becomes 
Step 2:  
We now have:
   

(b)

Step 1:  
Again, we need to use -substitution. Let Then, Also, we need to change the bounds of integration.
Plugging in our values into the equation we get and
Therefore, the integral becomes
Step 2:  
We now have:
   


Final Answer:  
(a)  
(b)  

Return to Sample Exam