Difference between revisions of "009B Sample Midterm 1, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 23: | Line 23: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3</math> | + | |We need to use <math style="vertical-align: 0px">u</math>-substitution. Let <math style="vertical-align: -2px">u=1+x^3.</math> Then, <math style="vertical-align: 0px">du=3x^2dx</math> and  <math style="vertical-align: -13px">\frac{du}{3}=x^2dx.</math> |
|- | |- | ||
− | |Therefore, the integral becomes  <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du</math> | + | |Therefore, the integral becomes  <math style="vertical-align: -13px">\frac{1}{3}\int \sqrt{u}~du.</math> |
|} | |} | ||
Line 33: | Line 33: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | | <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math> | + | | <math style="vertical-align: -13px">\int x^2\sqrt{1+x^3}~dx=\frac{1}{3}\int \sqrt{u}~du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C.</math> |
|} | |} | ||
Line 40: | Line 40: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x)</math> | + | |Again, we need to use <math>u</math>-substitution. Let <math style="vertical-align: -5px">u=\sin(x).</math> Then, <math style="vertical-align: -5px">du=\cos(x)dx.</math> Also, we need to change the bounds of integration. |
|- | |- | ||
− | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x)</math> | + | |Plugging in our values into the equation <math style="vertical-align: -5px">u=\sin(x),</math> we get <math style="vertical-align: -15px">u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math style="vertical-align: -16px">u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1.</math> |
|- | |- | ||
− | |Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du</math> | + | |Therefore, the integral becomes <math style="vertical-align: -19px">\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du.</math> |
|- | |- | ||
| | | | ||
Line 54: | Line 54: | ||
|We now have: | |We now have: | ||
|- | |- | ||
− | | <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math> | + | | <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}~du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}.</math> |
|- | |- | ||
| | | |
Revision as of 09:03, 6 February 2017
Evaluate the indefinite and definite integrals.
- a)
- b)
Foundations: |
---|
How would you integrate |
|
|
Solution:
(a)
Step 1: |
---|
We need to use -substitution. Let Then, and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
(b)
Step 1: |
---|
Again, we need to use -substitution. Let Then, Also, we need to change the bounds of integration. |
Plugging in our values into the equation we get and |
Therefore, the integral becomes |
Step 2: |
---|
We now have: |
Final Answer: |
---|
(a) |
(b) |