Difference between revisions of "009B Sample Midterm 1, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 22: Line 22:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|First, we write <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
+
|First, we write  
 +
|-
 +
| &nbsp; &nbsp; <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>.
 
|-
 
|-
 
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have
 
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have

Revision as of 08:58, 6 February 2017

Evaluate the integral:


Foundations:  
Recall the trig identity:
How would you integrate
You could use -substitution. Let Then,
Thus,

Solution:

Step 1:  
First, we write
    .
Using the identity , we get . If we use this identity, we have
    .
Step 2:  
Now, we use -substitution. Let . Then, . Therefore,
   .
Final Answer:  
  

Return to Sample Exam