Difference between revisions of "009B Sample Midterm 1, Problem 4"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 22: | Line 22: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |First, we write <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>. | + | |First, we write |
| + | |- | ||
| + | | <math style="vertical-align: -13px">\int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx</math>. | ||
|- | |- | ||
|Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have | |Using the identity <math style="vertical-align: -2px">\sin^2x+\cos^2x=1</math>, we get <math style="vertical-align: -1px">\sin^2x=1-\cos^2x</math>. If we use this identity, we have | ||
Revision as of 07:58, 6 February 2017
Evaluate the integral:
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^3x \cos^2x~dx}
| Foundations: |
|---|
| Recall the trig identity: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1.} |
| How would you integrate Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int \sin^2x\cos x~dx?} |
|
|
Solution:
| Step 1: |
|---|
| First, we write |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int (\sin x) \sin^2x\cos^2x~dx} . |
| Using the identity Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x+\cos^2x=1} , we get Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin^2x=1-\cos^2x} . If we use this identity, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int (\sin x) (1-\cos^2x)\cos^2x~dx=\int (\cos^2x-\cos^4x)\sin(x)~dx} . |
| Step 2: |
|---|
| Now, we use Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} -substitution. Let Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\cos(x)} . Then, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle du=-\sin(x)dx} . Therefore, |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int\sin^3x\cos^2x~dx=\int -(u^2-u^4)~du=\frac{-u^3}{3}+\frac{u^5}{5}+C=\frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C} . |
| Final Answer: |
|---|
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\cos^5x}{5}-\frac{\cos^3x}{3}+C} |