Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Evaluate the integral:
+
<span class="exam"> The rate of reaction to a drug is given by:
  
::<math>\int \sin (\ln x)~dx.</math>
+
::::::<math>r'(t)=2t^2e^{-t}</math>
 +
 
 +
<span class="exam">where <math>t</math> is the number of hours since the drug was administered.
 +
 
 +
<span class="exam">Find the total reaction to the drug from <math>t=1</math> to <math>t=6.</math>
  
  
Line 7: Line 11:
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|'''1.''' Integration by parts tells us that <math style="vertical-align: -12px">\int u~dv=uv-\int vdu.</math>
+
|
 
|-
 
|-
|'''2.''' How could we break up <math style="vertical-align: -5px">\sin (\ln x)~dx</math> into <math style="vertical-align: -1px">u</math> and <math style="vertical-align: -1px">dv?</math>
+
|
 
|-
 
|-
 
|
 
|
::Notice that <math style="vertical-align: -5px">\sin (\ln x)</math> is one term. So, we need to let <math style="vertical-align: -5px">u=\sin (\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math>
 
 
|}
 
|}
  
Line 19: Line 22:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|We proceed using integration by parts.
+
|
 
|-
 
|-
|Let <math style="vertical-align: -6px">u=\sin(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=\cos(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
+
|
 
|-
 
|-
|Therefore, we get
+
|
 
|-
 
|-
 
|
 
|
::<math>\int \sin (\ln x)~dx=x\sin(\ln x)-\int \cos(\ln x)~dx.</math>
 
 
|}
 
|}
  
Line 32: Line 34:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|Now, we need to use integration by parts again.
+
|
 
|-
 
|-
|Let <math style="vertical-align: -6px">u=\cos(\ln x)</math> and <math style="vertical-align: -1px">dv=dx.</math> Then, <math style="vertical-align: -14px">du=-\sin(\ln x)\frac{1}{x}dx</math> and <math style="vertical-align: -1px">v=x.</math>
+
|
 
|-
 
|-
|Therfore, we get
+
|
 
|-
 
|-
 
|
 
|
::<math>\begin{array}{rcl}
 
\displaystyle{\int \sin (\ln x)~dx} & = & \displaystyle{x\sin(\ln x)-\bigg(x\cos(\ln x)+\int \sin(\ln x)~dx\bigg)}\\
 
&&\\
 
& = & \displaystyle{x\sin(\ln x)-x\cos(\ln x)-\int \sin(\ln x)~dx.}\\
 
\end{array}</math>
 
 
|}
 
|}
  
Line 49: Line 46:
 
!Step 3: &nbsp;
 
!Step 3: &nbsp;
 
|-
 
|-
|Notice that the integral on the right of the last equation is the same integral that we had at the beginning.
+
|
 
|-
 
|-
|So, if we add the integral on the right to the other side of the equation, we get
+
|
 
|-
 
|-
 
|
 
|
::<math>2\int \sin(\ln x)~dx=x\sin(\ln x)-x\cos(\ln x).</math>
 
 
|-
 
|-
|Now, we divide both sides by 2 to get
+
|
 
|-
 
|-
 
|
 
|
::<math>\int \sin(\ln x)~dx=\frac{x\sin(\ln x)}{2}-\frac{x\cos(\ln x)}{2}.</math>
 
 
|-
 
|-
|Thus, the final answer is
+
|  
 
|-
 
|-
 
|
 
|
::<math>\int \sin(\ln x)~dx=\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C.</math>
 
 
|}
 
|}
  
Line 70: Line 64:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; <math>\frac{x}{2}(\sin(\ln x)-\cos(\ln x))+C</math>
+
|&nbsp;&nbsp;
 
|}
 
|}
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 10:27, 5 February 2017

The rate of reaction to a drug is given by:

where is the number of hours since the drug was administered.

Find the total reaction to the drug from to


Foundations:  

Solution:

Step 1:  
Step 2:  
Step 3:  
Final Answer:  
  

Return to Sample Exam