Difference between revisions of "009B Sample Midterm 2, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam"> This problem has three parts: |
| − | ::<span class="exam">a) | + | ::<span class="exam">a) State the Fundamental Theorem of Calculus. |
| − | |||
| + | ::<span class="exam">b) Compute   <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt.</math> | ||
| + | |||
| + | ::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx.</math> | ||
| Line 9: | Line 11: | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |'''1.''' What does Part 1 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt?</math> |
|- | |- | ||
| − | | | + | | |
| + | ::Part 1 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\frac{d}{dx}\int_0^x\sin(t)~dt=\sin(x).</math> | ||
|- | |- | ||
| − | |'''2.''' | + | |'''2.''' What does Part 2 of the Fundamental Theorem of Calculus say about <math style="vertical-align: -15px">\int_a^b\sec^2x~dx</math> where <math style="vertical-align: -5px">a,b</math> are constants? |
|- | |- | ||
| − | | | + | | |
| + | ::Part 2 of the Fundamental Theorem of Calculus says that <math style="vertical-align: -15px">\int_a^b\sec^2x~dx=F(b)-F(a)</math> where <math style="vertical-align: 0px">F</math> is any antiderivative of <math style="vertical-align: 0px">\sec^2x.</math> | ||
|} | |} | ||
| Line 21: | Line 25: | ||
'''(a)''' | '''(a)''' | ||
| + | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |The Fundamental Theorem of Calculus has two parts. |
|- | |- | ||
| − | | | + | |'''The Fundamental Theorem of Calculus, Part 1''' |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. |
| + | |- | ||
| + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | ||
|} | |} | ||
| Line 34: | Line 41: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |'''The Fundamental Theorem of Calculus, Part 2''' |
|- | |- | ||
| − | | | + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. |
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. |
|} | |} | ||
| + | '''(b)''' | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | |Let <math style="vertical-align: | + | |Let <math style="vertical-align: -15px">F(x)=\int_0^{\cos (x)}\sin (t)~dt</math>. The problem is asking us to find <math style="vertical-align: -5px">F'(x)</math>. |
| + | |- | ||
| + | |Let <math style="vertical-align: -5px">g(x)=\cos(x)</math> and <math style="vertical-align: -14px">G(x)=\int_0^x \sin(t)~dt</math>. | ||
|- | |- | ||
| − | | | + | |Then, <math style="vertical-align: -5px">F(x)=G(g(x))</math>. |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 2: | ||
|- | |- | ||
| − | | | + | |If we take the derivative of both sides of the last equation, we get <math style="vertical-align: -5px">F'(x)=G'(g(x))g'(x)</math> by the Chain Rule. |
| + | |} | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 3: | ||
| + | |- | ||
| + | |Now, <math style="vertical-align: -5px">g'(x)=-\sin(x)</math> and <math style="vertical-align: -5px">G'(x)=\sin(x)</math> by the '''Fundamental Theorem of Calculus, Part 1'''. | ||
| + | |- | ||
| + | |Since <math style="vertical-align: -6px">G'(g(x))=\sin(g(x))=\sin(\cos(x))</math>, we have <math style="vertical-align: -5px">F'(x)=G'(g(x))\cdot g'(x)=\sin(\cos(x))\cdot(-\sin(x))</math>. | ||
| + | |} | ||
| + | |||
| + | '''(c)''' | ||
| + | |||
| + | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
| + | !Step 1: | ||
| + | |- | ||
| + | | Using the '''Fundamental Theorem of Calculus, Part 2''', we have | ||
|- | |- | ||
| − | | | + | | <math>\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan(x)\biggr|_{0}^{\pi/4}</math> |
|} | |} | ||
| Line 57: | Line 86: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | |So, | + | |So, we get |
|- | |- | ||
| − | | <math>\ | + | | <math style="vertical-align: -16px">\int_{0}^{\frac{\pi}{4}}\sec^2 x~dx=\tan \bigg(\frac{\pi}{4}\bigg)-\tan (0)=1</math>. |
|- | |- | ||
| − | | | + | | |
| − | |||
| − | |||
|} | |} | ||
| Line 69: | Line 96: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | |'''(a)''' The | + | |'''(a)''' |
| + | |- | ||
| + | |'''The Fundamental Theorem of Calculus, Part 1''' | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: -14px">F(x)=\int_a^x f(t)~dt</math>. | ||
| + | |- | ||
| + | |Then, <math style="vertical-align: 0px">F</math> is a differentiable function on <math style="vertical-align: -5px">(a,b)</math>, and <math style="vertical-align: -5px">F'(x)=f(x)</math>. | ||
| + | |- | ||
| + | |'''The Fundamental Theorem of Calculus, Part 2''' | ||
| + | |- | ||
| + | |Let <math style="vertical-align: -4px">f</math> be continuous on <math style="vertical-align: -5px">[a,b]</math> and let <math style="vertical-align: 0px">F</math> be any antiderivative of <math style="vertical-align: -4px">f</math>. | ||
| + | |- | ||
| + | |Then, <math style="vertical-align: -14px">\int_a^b f(x)~dx=F(b)-F(a)</math>. | ||
| + | |- | ||
| + | |'''(b)''' <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt\,=\,\sin(\cos(x))\cdot(-\sin(x))</math>. | ||
|- | |- | ||
| − | |'''( | + | |'''(c)''' <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx\,=\,1</math>. |
|} | |} | ||
[[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | [[009B_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 09:16, 5 February 2017
This problem has three parts:
- a) State the Fundamental Theorem of Calculus.
- b) Compute
- c) Evaluate
| Foundations: |
|---|
| 1. What does Part 1 of the Fundamental Theorem of Calculus say about |
|
| 2. What does Part 2 of the Fundamental Theorem of Calculus say about where are constants? |
|
Solution:
(a)
| Step 1: |
|---|
| The Fundamental Theorem of Calculus has two parts. |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let . |
| Then, is a differentiable function on , and . |
| Step 2: |
|---|
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of . |
| Then, . |
(b)
| Step 1: |
|---|
| Let . The problem is asking us to find . |
| Let and . |
| Then, . |
| Step 2: |
|---|
| If we take the derivative of both sides of the last equation, we get by the Chain Rule. |
| Step 3: |
|---|
| Now, and by the Fundamental Theorem of Calculus, Part 1. |
| Since , we have . |
(c)
| Step 1: |
|---|
| Using the Fundamental Theorem of Calculus, Part 2, we have |
| Step 2: |
|---|
| So, we get |
| . |
| Final Answer: |
|---|
| (a) |
| The Fundamental Theorem of Calculus, Part 1 |
| Let be continuous on and let . |
| Then, is a differentiable function on , and . |
| The Fundamental Theorem of Calculus, Part 2 |
| Let be continuous on and let be any antiderivative of . |
| Then, . |
| (b) . |
| (c) . |