Difference between revisions of "009C Sample Midterm 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "test") |
Kayla Murray (talk | contribs) |
||
Line 1: | Line 1: | ||
− | test | + | '''This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar. Click on the''' '''<span class="biglink" style="color:darkblue;"> boxed problem numbers </span> to go to a solution.''' |
+ | <div class="noautonum">__TOC__</div> | ||
+ | |||
+ | == [[009C_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%"> Problem 1 </span></span>]] == | ||
+ | <span class="exam"> Find the following limits: | ||
+ | |||
+ | ::<span class="exam">a) Find <math>\lim _{x\rightarrow 2} g(x),</math> provided that <math>\lim _{x\rightarrow 2} \bigg[\frac{4-g(x)}{x}\bigg]=5</math> | ||
+ | ::<span class="exam">b) Find <math>\lim _{x\rightarrow 0} \frac{\sin(4x)}{5x} </math> | ||
+ | ::<span class="exam">c) Evaluate <math>\lim _{x\rightarrow -3^+} \frac{x}{x^2-9} </math> | ||
+ | |||
+ | == [[009C_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%"> Problem 2 </span>]] == | ||
+ | <span class="exam">Consider the following function <math> f:</math> | ||
+ | ::::::<math>f(x) = \left\{ | ||
+ | \begin{array}{lr} | ||
+ | x^2 & \text{if }x < 1\\ | ||
+ | \sqrt{x} & \text{if }x \geq 1 | ||
+ | \end{array} | ||
+ | \right. | ||
+ | </math> | ||
+ | |||
+ | ::<span class="exam">a) Find <math> \lim_{x\rightarrow 1^-} f(x).</math> | ||
+ | ::<span class="exam">b) Find <math> \lim_{x\rightarrow 1^+} f(x).</math> | ||
+ | ::<span class="exam">c) Find <math> \lim_{x\rightarrow 1} f(x).</math> | ||
+ | ::<span class="exam">d) Is <math>f</math> continuous at <math>x=1?</math> Briefly explain. | ||
+ | |||
+ | == [[009C_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%"> Problem 3 </span>]] == | ||
+ | <span class="exam"> Let <math>y=\sqrt{3x-5}.</math> | ||
+ | |||
+ | ::<span class="exam">a) Use the definition of the derivative to compute <math>\frac{dy}{dx}</math> for <math>y=\sqrt{3x-5}.</math> | ||
+ | ::<span class="exam">b) Find the equation of the tangent line to <math>y=\sqrt{3x-5}</math> at <math>(2,1).</math> | ||
+ | |||
+ | == [[009C_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%"> Problem 4 </span>]] == | ||
+ | <span class="exam"> Find the derivatives of the following functions. Do not simplify. | ||
+ | |||
+ | ::<span class="exam">a) <math>f(x)=\sqrt{x}(x^2+2)</math> | ||
+ | ::<span class="exam">b) <math>g(x)=\frac{x+3}{x^{\frac{3}{2}}+2}</math> where <math>x>0</math> | ||
+ | ::<span class="exam">c) <math>h(x)=\frac{e^{-5x^3}}{\sqrt{x^2+1}}</math> | ||
+ | |||
+ | == [[009C_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%"> Problem 5 </span>]] == | ||
+ | <span class="exam"> The displacement from equilibrium of an object in harmonic motion on the end of a spring is: | ||
+ | |||
+ | ::::::<span class="exam"><math>y=\frac{1}{3}\cos(12t)-\frac{1}{4}\sin(12t)</math> | ||
+ | |||
+ | <span class="exam">where <math>y</math> is measured in feet and <math>t</math> is the time in seconds. Determine the position and velocity of the object when <math>t=\frac{\pi}{8}.</math> |
Revision as of 17:49, 4 February 2017
This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar. Click on the boxed problem numbers to go to a solution.
Problem 1
Find the following limits:
- a) Find provided that
- b) Find
- c) Evaluate
Problem 2
Consider the following function
- a) Find
- b) Find
- c) Find
- d) Is continuous at Briefly explain.
Problem 3
Let
- a) Use the definition of the derivative to compute for
- b) Find the equation of the tangent line to at
Problem 4
Find the derivatives of the following functions. Do not simplify.
- a)
- b) where
- c)
Problem 5
The displacement from equilibrium of an object in harmonic motion on the end of a spring is:
where is measured in feet and is the time in seconds. Determine the position and velocity of the object when