Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
<span style="font-size:135%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
 
<span style="font-size:135%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
  
== 2. Derivatives ==
+
== Derivatives ==
<span style="font-size:135%"><font face=Times Roman>Find the derivatives of the following functions:</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>2. Find the derivatives of the following functions:</font face=Times Roman> </span>
 
<br>
 
<br>
 
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
 
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
Line 27: Line 27:
 
<br>
 
<br>
  
== 3. (Version I) Continuity and Differentiability ==
+
== Continuity and Differentiability ==
  
<span style="font-size:135%"><font face=Times Roman>Consider the following function:</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function:</font face=Times Roman> </span>
 
&nbsp;<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
&nbsp;<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
  
Line 36: Line 36:
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
  
== 3. (Version II) Continuity and Differentiability ==
+
<span style="font-size:135%"><font face=Times Roman>3. (Version II) Consider the following function:</font face=Times Roman> </span>
 
 
<span style="font-size:135%"><font face=Times Roman>Consider the following function:</font face=Times Roman> </span>
 
 
&nbsp;<math style="vertical-align: -110%;">g(x)=\begin{cases}
 
&nbsp;<math style="vertical-align: -110%;">g(x)=\begin{cases}
 
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\
 
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\
Line 48: Line 46:
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
 
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
  
==4. Implicit Differentiation ==
+
== Implicit Differentiation ==
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman> Find an equation for the tangent
+
<span style="font-size:135%"><font face=Times Roman> 4. Find an equation for the tangent
 
line to the function &nbsp;<math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math>  at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span>
 
line to the function &nbsp;<math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math>  at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span>
  
== 5.  Derivatives and Graphing ==
+
== Derivatives and Graphing ==
  
<span style="font-size:135%"><font face=Times Roman>Consider the function</font face=Times Roman></span>
+
<span style="font-size:135%"><font face=Times Roman>5. Consider the function</font face=Times Roman></span>
 
&nbsp;
 
&nbsp;
 
<math style="vertical-align: -55%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math>
 
<math style="vertical-align: -55%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math>
Line 71: Line 69:
 
<br>
 
<br>
  
== 6. Asymptotes ==
+
== Asymptotes ==
<span style="font-size:135%"><font face=Times Roman>Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>6. Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span>
 
<br>
 
<br>
 
<math>f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math>
 
<math>f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math>
 
<br>
 
<br>
  
== 7. Optimization ==
+
== Optimization ==
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>  A farmer wishes to make 4 identical rectangular pens, each with
+
<span style="font-size:135%"><font face=Times Roman>  7. A farmer wishes to make 4 identical rectangular pens, each with
 
500 sq. ft. of area. What dimensions for each pen will use the least
 
500 sq. ft. of area. What dimensions for each pen will use the least
 
amount of total fencing? </font face=Times Roman> </span>
 
amount of total fencing? </font face=Times Roman> </span>
Line 85: Line 83:
 
<< insert image here >>
 
<< insert image here >>
  
== 8. Linear Approximation ==
+
== Linear Approximation ==
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman>(a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. </font face=Times Roman> </span>
+
<span style="font-size:135%"> <font face=Times Roman>8. (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. </font face=Times Roman> </span>
 
<br>
 
<br>
 
<span style="font-size:135%"> <font face=Times Roman>(b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec(3\pi/7)</math>. </font face=Times Roman> </span>
 
<span style="font-size:135%"> <font face=Times Roman>(b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec(3\pi/7)</math>. </font face=Times Roman> </span>
 
<br>
 
<br>
  
== 9. Related Rates ==
+
== Related Rates ==
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman>  A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of &nbsp; <math style="vertical-align: -42%;">\frac{dx}{dt}=30</math>.
+
<span style="font-size:135%"> <font face=Times Roman>  9. A bug is crawling along the <math style="vertical-align: 0%;">x</math>-axis at a constant speed of &nbsp; <math style="vertical-align: -42%;">\frac{dx}{dt}=30</math>.
 
How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing
 
How fast is the distance between the bug and the point <math style="vertical-align: -14%;">(3,4)</math> changing
 
when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''.  </font face=Times Roman> </span>
 
when the bug is at the origin? ''(Note that if the distance is decreasing, then you should have a negative answer)''.  </font face=Times Roman> </span>
 
<br>
 
<br>
  
== 10. Two Important Theorems ==
+
== Two Important Theorems ==
<span style="font-size:135%"><font face=Times Roman>Consider the function</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>10. Consider the function</font face=Times Roman> </span>
 
&nbsp;
 
&nbsp;
 
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math>
 
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math>

Revision as of 09:32, 23 March 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


Limits

1. Find the following limits:

(a)  

(b)  

(c)  

(d)  

(e)  

Derivatives

2. Find the derivatives of the following functions:
(a)  

(b)  

(c)  

Continuity and Differentiability

3. (Version I) Consider the following function:  

(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Consider the following function:  

(a) Find a value of   which makes continuous at

(b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

Implicit Differentiation


4. Find an equation for the tangent line to the function   at the point .

Derivatives and Graphing

5. Consider the function  
(a) Find the intervals where the function is increasing and decreasing.
(b) Find the local maxima and minima.
(c) Find the intervals on which is concave upward and concave downward.
(d) Find all inflection points.
(e) Use the information in the above to sketch the graph of .

Asymptotes

6. Find the vertical and horizontal asymptotes of the function

Optimization


7. A farmer wishes to make 4 identical rectangular pens, each with 500 sq. ft. of area. What dimensions for each pen will use the least amount of total fencing?

<< insert image here >>

Linear Approximation


8. (a) Find the linear approximation to the function at the point .
(b) Use to estimate the value of .

Related Rates


9. A bug is crawling along the -axis at a constant speed of   . How fast is the distance between the bug and the point changing when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).

Two Important Theorems

10. Consider the function  
(a) Use the Intermediate Value Theorem to show that has at least one zero.
(b) Use Rolle's Theorem to show that has exactly one zero.